吉林大学学报(医学版) ›› 2021, Vol. 47 ›› Issue (6): 1594-1600.doi: 10.13481/j.1671-587X.20210634
• 综述 • 上一篇
收稿日期:
2020-11-14
出版日期:
2021-11-28
发布日期:
2021-12-14
通讯作者:
梅花
E-mail:meihuayani@sina.com
作者简介:
霍梦月(1994-),女,内蒙古自治区乌海市人,住院医师,医学硕士,主要从事新生儿和新生儿疾病方面的研究。
基金资助:
Received:
2020-11-14
Online:
2021-11-28
Published:
2021-12-14
摘要:
支气管肺发育不良(BPD)是早产儿常见的慢性呼吸系统危重疾病之一。BPD的发病机制涉及遗传因素和环境因素之间复杂的相互作用,而表观遗传学则在整合遗传因素与环境因素中起关键作用。目前国内外关于表观遗传修饰在BPD形成过程中作用的研究较少,现就DNA甲基化、组蛋白修饰和非编码RNA(ncRNA)等表观遗传修饰在BPD发病机制中的作用进行阐述,为BP发病机制的研究提供新思路。
中图分类号:
霍梦月,梅花. 表观遗传修饰在支气管肺发育不良发病机制中作用的研究进展[J]. 吉林大学学报(医学版), 2021, 47(6): 1594-1600.
1 | SAVANI R C. Modulators of inflammation in bronchopulmonary dysplasia[J]. Semin Perinatol, 2018, 42(7): 459-470. |
2 | BERKELHAMER S K, MESTAN K K, STEINHORN R. An update on the diagnosis and management of bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension[J]. Semin Perinatol, 2018, 42(7): 432-443. |
3 | IBRAHIM J, BHANDARI V. The definition of bronchopulmonary dysplasia: an evolving dilemma[J]. Pediatr Res, 2018, 84(5): 586-588. |
4 | HWANG J S, REHAN V K. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment[J]. Lung, 2018, 196(2): 129-138. |
5 | PARKER R A, LINDSTROM D P, COTTON R B. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia[J]. Semin Perinatol, 1996, 20(3): 206-209. |
6 | RONKAINEN E, PERHOMAA M, MATTILA L,et al.Structural pulmonary abnormalities still evident in schoolchildren with new bronchopulmonary dysplasia[J]. Neonatology, 2018, 113(2): 122-130. |
7 | KATO M, NATARAJAN R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019, 15(6): 327-345. |
8 | WU R, WANG L, YIN R, et al. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer[J]. Mol Carcinog, 2020, 59(2): 227-236. |
9 | CASTRO-SANTOS P, DÍAZ-PEÑA R. Genomics and epigenomics in rheumatic diseases: what do they provide in terms of diagnosis and disease management?[J]. Clin Rheumatol, 2017, 36(9): 1935-1947. |
10 | AGUDELO GARCIA P A, HOOVER M E, ZHANG P,et al. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly[J]. Nucleic Acids Res, 2017, 45(16): 9319-9335. |
11 | MAHMOUD A M, ALI M M. Methyl donor micronutrients that modify DNA methylation and cancer outcome[J]. Nutrients,2019,11(3):608. |
12 | YANG X W, WONG M P M, NG R K. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications[J]. Int J Mol Sci, 2019, 20(18): 4576. |
13 | GINDER G D, WILLIAMS D C. Readers of DNA methylation, the MBD family as potential therapeutic targets[J]. Pharmacol Ther, 2018, 184: 98-111. |
14 | ZHU Y, FU J, YANG H, et al. Hyperoxia-induced methylation decreases RUNX3 in a newborn rat model of bronchopulmonary dysplasia[J]. Respir Res, 2015, 16: 75. |
15 | CUNA A, HALLORAN B, FAYE-PETERSEN O, et al. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation[J]. Am J Respir Cell Mol Biol, 2015, 53(1): 60-73. |
16 | ZHU L, LI H, TANG J, et al. Hyperoxia arrests alveolar development through suppression of histone deacetylases in neonatal rats[J]. Pediatr Pulmonol, 2012, 47(3): 264-274. |
17 | ROBBINS M E, DAKHLALLAH D, MARSH C B, et al. Of mice and men: correlations between microRNA-17-92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(5): L981-L984. |
18 | CHEN C M, LIU Y C, CHEN Y J, et al. Genome-wide analysis of DNA methylation in hyperoxia-exposed newborn rat lung[J]. Lung, 2017, 195(5): 661-669. |
19 | BIK-MULTANOWSKI M, REVHAUG C, GRABOWSKA A, et al. Hyperoxia induces epigenetic changes in newborn mice lungs[J]. Free Radic Biol Med, 2018, 121: 51-56. |
20 | REVHAUG C, BIK-MULTANOWSKI M, ZASADA M,et al. Immune system regulation affected by a murine experimental model of bronchopulmonary dysplasia: genomic and epigenetic findings[J]. Neonatology, 2019, 116(3): 269-277. |
21 | CHENG H R, HE S R, WU B Q, et al. Deep Illumina sequencing reveals differential expression of long non-coding RNAs in hyperoxia induced bronchopulmonary dysplasia in a rat model[J]. Am J Transl Res, 2017, 9(12): 5696-5707. |
22 | SIDOLI S, TREFELY S, GARCIA B A, et al. Integrated analysis of acetyl-CoA and histone modification via mass spectrometry to investigate metabolically driven acetylation[J]. Methods Mol Biol, 2019, 1928: 125-147. |
23 | KIM J E. Bookmarking by histone methylation ensures chromosomal integrity during mitosis[J]. Arch Pharm Res, 2019, 42(6): 466-480. |
24 | LIN Y M, LI Y, ZHU X T,et al.Genetic contexts characterize dynamic histone modification patterns among cell types[J].Interdiscip Sci, 2019, 11(4):698-710. |
25 | ORENAY-BOYACIOGLU S, KASAP E, GERCEKER E, et al. Expression profiles of histone modification genes in gastric cancer progression[J]. Mol Biol Rep, 2018, 45(6): 2275-2282. |
26 | DASKALAKI M G, TSATSANIS C, KAMPRANIS S C. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses[J]. J Cell Physiol, 2018, 233(9): 6495-6507. |
27 | CHAO C M, BRUCK RVAN DEN, LORK S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37. |
28 | COHEN J, JVAN MARTER L, SUN Y, et al. Perturbation of gene expression of the chromatin remodeling pathway in premature newborns at risk for bronchopulmonary dysplasia[J]. Genome Biol, 2007, 8(10): R210. |
29 | LONDHE V A, SUNDAR I K, LOPEZ B, et al. Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung[J]. Pediatr Res, 2011, 69(5 Pt 1): 371-377. |
30 | NI W, LIN N, HE H, et al. Lipopolysaccharide induces up-regulation of TGF-α through HDAC2 in a rat model of bronchopulmonary dysplasia[J]. PLoS One, 2014, 9(3): e91083. |
31 | MODY K, SASLOW J G, KATHIRAVAN S, et al. Sirtuin1 in tracheal aspirate leukocytes: possible role in the development of bronchopulmonary dysplasia in premature infants[J]. J Matern Fetal Neonatal Med, 2012, 25(8): 1483-1487. |
32 | MENDEN H, XIA S, MABRY S M, et al. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 317(3): L332-L346. |
33 | YU X H, WANG H F, WU J B, et al. Non-coding RNAs derailed: The many influences on the fatty acid reprogramming of cancer[J]. Life Sci, 2019, 231: 116509. |
34 | PANIR K, SCHJENKEN J E, ROBERTSON S A,et al.Non-coding RNAs in endometriosis: a narrative review[J]. Hum Reprod Update, 2018,24(4): 497-515. |
35 | LU T X, ROTHENBERG M E. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207. |
36 | PIEDADE D, AZEVEDO-PEREIRA J M. MicroRNAs as important players in host-adenovirus interactions[J]. Front Microbiol, 2017, 8: 1324. |
37 | DURRANI-KOLARIK S, POOL C A, GRAY A, et al. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(2): L339-L349. |
38 | AMEIS D, KHOSHGOO N, IWASIOW B M, et al. MicroRNAs in lung development and disease[J]. Paediatr Respir Rev, 2017, 22: 38-43. |
39 | XING Y, FU J, YANG H, et al. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia[J]. Int J Mol Med, 2015, 36(5): 1253-1263. |
40 | LAL C V, OLAVE N, TRAVERS C, et al. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants[J]. JCI Insight,2018,3(5):e93994. |
41 | SUN Y F, MA L, GONG X H, et al. Expression of microRNA-495-5p in preterm infants with bronchopulmonary dysplasia:a bioinformatics analysis[J].Chin J Contemp Pediatr,2020,22(1): 24-30. |
42 | WANG J, YIN J, WANG X, et al. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model[J]. J Cell Biochem, 2019, 120(6): 9369-9380. |
43 | ZHANG Y, COARFA C, DONG X, et al. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1): L144-L156. |
44 | SYED M, DAS P, PAWAR A, et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs[J]. Nat Commun, 2017, 8(1): 1173. |
45 | YUAN H S, XIONG D Q, HUANG F, et al. MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10[J]. J Cell Biochem, 2019, 120(10): 16876-16887. |
46 | KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. |
47 | QIAN X Y, ZHAO J Y, YEUNG P Y, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52. |
48 | CHARLES RICHARD J L, EICHHORN P J A. Platforms for investigating LncRNA functions[J]. SLAS Technol,2018, 23(6): 493-506. |
49 | CAI C, QIU J J, QIU G, et al. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis[J]. BMC Pulm Med, 2017, 17(1): 1-8. |
50 | 张 艳, 包天平, 宋晓彤, 等. 长链非编码RNA_AK096792作为早产儿支气管肺发育不良早期诊断的脐带血清标志物研究[J]. 中华实用儿科临床杂志, 2018, 33(14): 1075-1078. |
51 | BAO T P, WU R, CHENG H P, et al. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia[J]. Cell Biochem Funct, 2016, 34(5): 299-309. |
52 | 包天平, 田兆方, 赵 赛, 等. 长链非编码RNA1010001N08Rik在支气管肺发育不良形成中的表达规律及生物信息学分析[J]. 中华新生儿科杂志(中英文), 2017, 32(5): 384-388. |
[1] | 周立花,胡英,邹晖. 复发性流产患者绒毛组织中miR-27a表达对滋养细胞增殖和凋亡的影响及其作用机制[J]. 吉林大学学报(医学版), 2022, 48(4): 1018-1027. |
[2] | 张洋,陈美月,崔莹,刘娜. 丹参酮ⅡA对缺氧缺血性脑病新生大鼠海马组织中miR-132表达的调节作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(4): 905-914. |
[3] | 汪国武,姚远,张雨,徐娜,刘芳. miR-152降低低密度脂蛋白受体表达对子宫内膜癌细胞增殖和侵袭的抑制作用[J]. 吉林大学学报(医学版), 2022, 48(3): 591-599. |
[4] | 仲春雪,徐华,张晨,何丽娟. miRNA-138-5p过表达对香烟烟雾暴露所致大鼠睾丸支持细胞损伤的调控作用[J]. 吉林大学学报(医学版), 2022, 48(3): 692-701. |
[5] | 吴壮志,贺小宁,陈思祺. miR-124-3p对口腔鳞状细胞癌细胞增殖和侵袭的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 718-727. |
[6] | 王青慧,李波,胡传翠,聂明朝,郑小妹. miR-107对卵巢癌细胞免疫逃逸的调控和紫杉醇耐药性的影响[J]. 吉林大学学报(医学版), 2022, 48(3): 734-743. |
[7] | 潘延斌,苏家光,谭美乐,杨猛,覃文飞,黄榆秀,蒙世豪,黄耀辉,梁坚强,苏雪芳,黄姿婵,李建民. 沉默DNMT3a表达对银屑病样细胞周期进展和细胞增殖的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 773-782. |
[8] | 赵智慧,白香花,何金玲,段伟琴,刘敏,张生茂. 舒芬太尼对心肌缺血再灌注损伤大鼠心肌细胞凋亡的抑制作用及其作用机制[J]. 吉林大学学报(医学版), 2022, 48(2): 364-373. |
[9] | 韩娜,刘凡平,田彦卿,郑志清,郎伟明,王倩,刘亚涛,朱建光. miRNA-27a对实验性肺结核大鼠免疫功能的调控作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(1): 104-110. |
[10] | 周超锋,周世繁,田青,王赛,李洪霖,马纯政. lncRNA-NORAD表达对食管癌Eca-109细胞生物学行为的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(1): 33-43. |
[11] | 孙俊波,高达,赵逸菲,许华,邱帆,赵璐. 丹皮酚对大鼠糖尿病视网膜病变的改善作用及其调节miR-802-5p表达的作用机制[J]. 吉林大学学报(医学版), 2022, 48(1): 82-93. |
[12] | 董霞,王训霞,杨芳. miR-34a对人牙周膜干细胞成骨分化的促进作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(6): 1362-1370. |
[13] | 黄悦,王秋宁,杨雪峰,陶贵周. 黄芪甲苷对miRNA-1过表达诱导大鼠心力衰竭的保护作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(6): 1437-1445. |
[14] | 倪盟,曾雷. miRNA单核苷酸多态性与HBV感染相关疾病关系的研究进展[J]. 吉林大学学报(医学版), 2021, 47(6): 1588-1593. |
[15] | 黄好,贾虹,王晓霜,张鹭,段亚亭. 妊娠期糖尿病患者胎盘组织中miRNA-508-3p和HGF表达水平及其对滋养细胞胰岛素抵抗的影响[J]. 吉林大学学报(医学版), 2021, 47(1): 187-195. |
|