吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (4): 1071-1078.doi: 10.13481/j.1671-587X.20220431
• 综述 • 上一篇
收稿日期:
2021-08-20
出版日期:
2022-07-28
发布日期:
2022-07-26
通讯作者:
周红光
E-mail:zhouhongguang2288@163.com
作者简介:
陈海彬(1971-),男,山东省武城县人,实验师,医学硕士,主要从事中医药抗肿瘤方面的研究。
基金资助:
Received:
2021-08-20
Online:
2022-07-28
Published:
2022-07-26
摘要:
肠道微生态与结直肠癌(CRC)发生发展的关系目前已成为研究的热点。肠道微生态的改变参与了结直肠黏膜缓慢发展成腺瘤和息肉,最终演变成CRC的整个过程,CRC患者存在肠道微生态紊乱的现象,CRC是宿主肠道免疫稳态失衡和表观遗传变异的积累。现全面回顾性分析最近的相关研究,探讨肠道微生态对肠道免疫稳态和表观遗传修饰的影响及与CRC发生发展的关系,重点从肠道微生物和肠道微生物源代谢调节物2个方面进行总结,以更有效地对CRC进行预防、诊断、治疗和管理。
中图分类号:
陈海彬,周红光,邱雯莉,李文婷,周洪立. 肠道微生态对肠道免疫稳态和表观遗传修饰的调控作用及其与结直肠癌发生发展关系的研究进展[J]. 吉林大学学报(医学版), 2022, 48(4): 1071-1078.
1 | JEON J, DU M M, SCHOEN R E, et al. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors[J]. Gastroenterology, 2018,154(8):2152-2164.e19. |
2 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
3 | AKIMOTO N, UGAI T, ZHONG R, et al. Rising incidence of early-onset colorectal cancer-a call to action[J]. Nat Rev Clin Oncol, 2021, 18(4): 230-243. |
4 | ESPENSCHIED C R, LADUCA H, LI S W, et al. Multigene panel testing provides a new perspective on lynch syndrome[J]. J Clin Oncol, 2017, 35(22): 2568-2575. |
5 | SHAH R S, PLESEC T, BHATT A. Abnormal biliary mucosa uncovered in a familial adenomatous polyposis patient[J]. Gastroenterology, 2020, 158(5): e1-e2. |
6 | SENGUPTA S, BOSE S. Peutz-jeghers syndrome[J]. N Engl J Med,2019,380(5):472. |
7 | BARREAU F, TISSEYRE C, MÉNARD S, et al. Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer[J]. Part Fibre Toxicol, 2021, 18(1): 26. |
8 | HONG S N. Genetic and epigenetic alterations of colorectal cancer[J]. Intest Res, 2018, 16(3): 327-337. |
9 | WILD C P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(8): 1847-1850. |
10 | ZHAO Y H, WANG C X, GOEL A. Role of gut microbiota in epigenetic regulation of colorectal cancer[J]. Biochim Biophys Acta Rev Cancer,2021, 1875(1): 188490. |
11 | HOLLISTER E B, GAO C X, VERSALOVIC J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health[J]. Gastroenterology, 2014, 146(6): 1449-1458. |
12 | BELKAID Y, HARRISON O J. Homeostatic immunity and the microbiota[J]. Immunity,2017,46(4): 562-576. |
13 | WEYRICH A, LENZ D, FICKEL J. Environmental change-dependent inherited epigenetic response[J]. Genes (Basel), 2018, 10(1): E4. |
14 | WEYRICH A, YASAR S, LENZ D, et al. Tissue-specific epigenetic inheritance after paternal heat exposure in male wild Guinea pigs[J]. Mamm Genome, 2020, 31(5/6): 157-169. |
15 | WU J M, ZHAO Y, WANG X, et al. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications[J]. Crit Rev Food Sci Nutr, 2022,62(3): 783-797. |
16 | DOVE W F, CLIPSON L, GOULD K A, et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status[J]. Cancer Res, 1997, 57(5): 812-814. |
17 | FENG Q, LIANG S S, JIA H J, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence[J]. Nat Commun, 2015, 6: 6528. |
18 | DAI Z W, COKER O O, NAKATSU G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers[J]. Microbiome,2018,6(1): 70. |
19 | YU J, FENG Q, WONG S H, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer[J]. Gut, 2017, 66(1): 70-78. |
20 | NAKATSU G, LI X C, ZHOU H K, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis[J]. Nat Commun, 2015, 6: 8727. |
21 | GALLOWAY-PEÑA J R, SMITH D P, SAHASRABHOJANE P, et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients[J]. Genome Med, 2017, 9(1): 21. |
22 | GHOSH T S, DAS M, JEFFERY I B, et al. Adjusting for age improves identification of gut microbiome alterations in multiple diseases[J].Elife,2020,9: e50240. |
23 | MIZUTANI S, YAMADA T, YACHIDA S. Significance of the gut microbiome in multistep colorectal carcinogenesis[J]. Cancer Sci, 2020, 111(3): 766-773. |
24 | STRACHAN D P. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260. |
25 | KOLIARAKIS I, PSAROULAKI A, NIKOLOUZAKIS T K, et al. Intestinal microbiota and colorectal cancer: a new aspect of research[J]. J BUON, 2018, 23(5): 1216-1234. |
26 | KOULOURIS A, TSAGKARIS C, MESSARITAKIS I, et al. Resectable colorectal cancer: current perceptions on the correlation of recurrence risk, microbiota and detection of genetic mutations in liquid biopsies[J]. Cancers, 2021, 13(14): 3522. |
27 | TOJO R, SUÁREZ A, CLEMENTE M G, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis[J]. World J Gastroenterol, 2014, 20(41): 15163-15176. |
28 | GOGOKHIA L, BUHRKE K, BELL R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis[J]. Cell Host Microbe, 2019, 25(2): 285-299.e8. |
29 | CHENG A S L, LI M S, KANG W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis[J]. Gastroenterology, 2013, 144(1): 122-133.e9. |
30 | NAKATA K, SUGI Y, NARABAYASHI H, et al. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4[J]. J Biol Chem, 2017, 292(37): 15426-15433. |
31 | LIANG L X, AI L Y, QIAN J, et al. Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes[J]. Sci Rep, 2015, 5: 11763. |
32 | MOLONEY G M, VIOLA M F, HOBAN A E, et al. Faecal microRNAs: indicators of imbalance at the host-microbe interface? [J]. Benef Microbes, 2018, 9(2): 175-183. |
33 | KOSTIC A D, GEVERS D, PEDAMALLU C S,et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma[J].Genome Res,2012,22(2): 292-298. |
34 | LI Y Y, GE Q X, CAO J, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients[J]. World J Gastroenterol, 2016, 22(11): 3227-3233. |
35 | SUEHIRO Y, SAKAI K H, NISHIOKA M, et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population[J]. Ann Clin Biochem, 2017, 54(1): 86-91. |
36 | OH H J, KIM J H, BAE J M, et al. Prognostic impact of fusobacterium nucleatum depends on combined tumor location and microsatellite instability status in stage Ⅱ/Ⅲ colorectal cancers treated with adjuvant chemotherapy[J]. J Pathol Transl Med, 2019, 53(1): 40-49. |
37 | SUN C H, LI B B, WANG B, et al. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management[J]. Chronic Dis Transl Med, 2019, 5(3): 178-187. |
38 | KOMIYA Y, SHIMOMURA Y, HIGURASHI T,et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity[J]. Gut, 2019, 68(7): 1335-1337. |
39 | HALE V L, CHEN J, JOHNSON S, et al. Shifts in the fecal microbiota associated with adenomatous polyps[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(1): 85-94. |
40 | DREWES J L, CORONA A, SANCHEZ U, et al. Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile[J]. JCI Insight, 2019, 4(19): e130848. |
41 | NAKATSU G, ZHOU H K, WU W K K, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes[J]. Gastroenterology, 2018, 155(2): 529-541.e5. |
42 | BOLEIJ A, MVAN GELDER M, SWINKELS D W, et al. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis[J].Clin Infect Dis,2011,53(9): 870-878. |
43 | BODAGHI S, YAMANEGI K, XIAO S Y, et al. Colorectal papillomavirus infection in patients with colorectal cancer[J]. Clin Cancer Res, 2005, 11(8): 2862-2867. |
44 | KOSTIC A D, CHUN E, ROBERTSON L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013,14(2): 207-215. |
45 | KASHANI N, BEZMIN ABADI A T, RAHIMI F,et al.FadA-positive Fusobacterium nucleatum is prevalent in biopsy specimens of Iranian patients with colorectal cancer[J]. New Microbes New Infect, 2020, 34: 100651. |
46 | RANJBAR M, SALEHI R, HAGHJOOY JAVANMARD S, et al. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review[J]. Cancer Cell Int, 2021, 21(1): 194. |
47 | RUBINSTEIN M R, WANG X W, LIU W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. |
48 | KONG C, YAN X B, ZHU Y F, et al. Fusobacterium nucleatum promotes the development of colorectal cancer by activating a cytochrome P450/epoxyoctadecenoic acid axis via TLR4/Keap1/NRF2 signaling[J]. Cancer Res, 2021, 81(17): 4485-4498. |
49 | YAN X B, LIU L G, LI H, et al. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage Ⅲ/Ⅳ colorectal cancer patients[J]. Onco Targets Ther, 2017, 10: 5031-5046. |
50 | PROENÇA M A, BISELLI J M, SUCCI M, et al. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis[J].World J Gastroenterol,2018,24(47): 5351-5365. |
51 | CHEN T, LI Q, WU J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism[J]. Cancer Immunol Immunother, 2018, 67(10): 1635-1646. |
52 | HU L J, LIU Y, KONG X H, et al. Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-κB/S100A9 cascade[J]. Front Immunol, 2021, 12: 658681. |
53 | KORDAHI M C, STANAWAY I B, AVRIL M, et al. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer[J]. Cell Host Microbe, 2021, 29(10): 1589-1598.e6. |
54 | LONG X H, WONG C C, TONG L, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nat Microbiol, 2019, 4(12): 2319-2330. |
55 | TSOI H, CHU E S H, ZHANG X, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice[J]. Gastroenterology, 2017, 152(6): 1419-1433.e5. |
56 | SABIT H, CEVIK E, TOMBULOGLU H. Colorectal cancer: the epigenetic role of microbiome[J]. World J Clin Cases, 2019, 7(22): 3683-3697. |
57 | GOMES S D, OLIVEIRA C S, AZEVEDO-SILVA J, et al. The role of diet related short-chain fatty acids in colorectal cancer metabolism and survival: prevention and therapeutic implications[J]. Curr Med Chem, 2020, 27(24): 4087-4108. |
58 | YANG J, YU J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487. |
59 | MA H, YU Y, WANG M M, et al. Correlation between microbes and colorectal cancer: tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids[J]. Apoptosis, 2019, 24(1/2): 168-183. |
60 | WANG G, YU Y, WANG Y Z, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. J Cell Physiol, 2019, 234(10): 17023-17049. |
61 | FANG Y K, YAN C, ZHAO Q, et al. The roles of microbial products in the development of colorectal cancer:a review[J].Bioengineered,2021,12(1):720-735. |
62 | JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. |
63 | LIU T Y, SONG X L, KHAN S, et al. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: an old story, yet mesmerizing[J]. Int J Cancer, 2020, 146(7): 1780-1790. |
64 | DALAL N, JALANDRA R, BAYAL N, et al. Gut microbiota-derived metabolites in CRC progression and causation[J]. J Cancer Res Clin Oncol, 2021, 147(11): 3141-3155. |
65 | CHATTOPADHYAY I, DHAR R, PETHUSAMY K,et al. Exploring the role of gut microbiome in colon cancer[J]. Appl Biochem Biotechnol, 2021, 193(6): 1780-1799. |
[1] | 孙艳,董新华,李东颖,郑庆芬,杨荟玉,刘冰熔. 结直肠癌患者一级亲属对结直肠癌筛查认知状况的调查分析[J]. 吉林大学学报(医学版), 2022, 48(4): 1065-1070. |
[2] | 曹秋婷,韩竞春,张晓飞. 沉默解旋酶BLM基因对结直肠癌细胞伊立替康化疗敏感性的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 657-667. |
[3] | 卢瑞云,谷敬锋,张建,张新,徐菲. miR-30a-5p靶向调控TRIM31表达对结直肠癌细胞5-氟尿嘧啶耐药的逆转作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(3): 714-723. |
[4] | 裴永彬,王桂琦,李卫,姜霞,姜海波,赵增仁. 姜黄素对结直肠癌小鼠肿瘤生长的抑制作用及其PTEN/PI3K/Akt信号通路机制[J]. 吉林大学学报(医学版), 2021, 47(1): 145-151. |
[5] | 李霞,于逸,左海维,周凤娟,辛勇. circRNAs对结直肠癌的抑制作用及其生物信息学分析[J]. 吉林大学学报(医学版), 2020, 46(6): 1283-1287. |
[6] | 王丹, 廖丹, 李红, 熊立秋, 武莹, 董营, 盖晓东. 浆细胞样树突状细胞和Foxp3+调节性T细胞在结直肠癌组织中的表达及其意义[J]. 吉林大学学报(医学版), 2020, 46(04): 834-838. |
[7] | 孟爽, 李迎杰, 臧晓珍, 赵乾芳, 张进, 李静. 敲减TLR2基因对结直肠癌细胞增殖的抑制作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(02): 316-322. |
[8] | 王丹, 宋紫绮, 李怡飞, 历春, 董志恒, 董营, 盖晓东. 人结直肠癌和肿瘤引流淋巴结组织中Foxp3+调节性T细胞和髓样树突状细胞的表达及其意义[J]. 吉林大学学报(医学版), 2019, 45(03): 621-626. |
[9] | 朱广伟, 郑炜, 黄永建, 华进, 杨树钢, 叶建新. 髓样分化因子88在结直肠癌患者癌组织中的表达及其临床意义[J]. 吉林大学学报(医学版), 2018, 44(05): 1047-1051. |
[10] | 王丹, 李怡飞, 历春, 董志恒, 董营, 盖晓东. 结直肠癌组织中B7-H1和B7-H4表达与Foxp3+调节性T细胞浸润的关联性[J]. 吉林大学学报(医学版), 2018, 44(03): 543-547. |
[11] | 焦洋, 杨冬野, 杨晶, 刘飞, 康喜荣, 张建生. Krüppel样转录因子12在结直肠癌患者肿瘤组织和血清中的表达及其意义[J]. 吉林大学学报(医学版), 2017, 43(06): 1204-1208. |
[12] | 杨冬阳, 赖晓嵘, 黎莹, 马立宇, 罗刚, 李子俊, 徐飞, 马冬. Ⅳ期结直肠癌轻微症状患者原发灶切除和KRAS基因突变对其预后的影响[J]. 吉林大学学报(医学版), 2017, 43(04): 805-811. |
[13] | 陈志华, 林素勇, 韩宏景, 苏小宝, 陈绍勤, 戴起宝. 慢病毒转染KISS1基因对人结直肠癌HCT116细胞增殖、侵袭和迁移能力的影响[J]. 吉林大学学报(医学版), 2017, 43(03): 577-581. |
[14] | 钟华, 刘迪群. 结直肠癌组织中Ki-67和COX-2的表达及其临床意义[J]. 吉林大学学报(医学版), 2016, 42(06): 1168-1172. |
[15] | 鲁有望, 王昆华. 二代测序技术在结直肠癌基因组测序中应用的研究进展[J]. 吉林大学学报(医学版), 2016, 42(06): 1263-1266. |
|