吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (4): 1079-1087.doi: 10.13481/j.1671-587X.20220432
• 综述 • 上一篇
收稿日期:
2021-12-17
出版日期:
2022-07-28
发布日期:
2022-07-26
通讯作者:
孟宪瑛
E-mail:mengxiany@mail.jlu.edu.cn
作者简介:
叶德宇(1996-),男,河南省信阳市人,在读硕士研究生,主要从事甲状腺和甲状旁腺肿瘤方面的研究。
基金资助:
Received:
2021-12-17
Online:
2022-07-28
Published:
2022-07-26
摘要:
炎症细胞在肿瘤的发生发展过程中扮演着重要角色,Toll蛋白家族及其下游的核因子κB(NF-κB)在肿瘤炎症网络中处于核心位置。中性粒细胞、血小板和淋巴细胞构成的炎性标志物对多种肿瘤的诊断、治疗和预后评估具有指导意义。中性粒细胞在肿瘤微环境中可被诱导为不同的表型,其分泌的细胞因子或细胞毒物质在抗肿瘤或促肿瘤中发挥复杂的作用。血小板及其衍生分子异常激活后通过多种形式促进了肿瘤的进展和免疫逃逸。T淋巴细胞亚群众多,是适应性免疫应答的主要执行者,在肿瘤免疫编辑中发挥重要作用。近年来,免疫检查点抑制剂、过继T淋巴细胞疗法和纳米颗粒与T淋巴细胞的结合展现了T淋巴细胞的治疗潜力,是未来肿瘤免疫治疗的重要研究方向。如何促进CD8+T淋巴细胞的杀伤效应、减弱调节性T淋巴细胞(Treg)的肿瘤免疫抑制和逆转耗竭T淋巴细胞是目前肿瘤研究的热点。现对炎症相关指标中性粒细胞、血小板和淋巴细胞与恶性肿瘤的相互作用及其相关机制进行综述,以构建更加完善的恶性肿瘤诊治体系。
中图分类号:
叶德宇,杨帅,赵龙龙,孟宪瑛. 炎性标志物对恶性肿瘤发生发展和预后的影响及其机制的研究进展[J]. 吉林大学学报(医学版), 2022, 48(4): 1079-1087.
1 | ZHANG X, LI S, WANG J H, et al. Relationship between serum inflammatory factor levels and differentiated thyroid carcinoma[J]. Technol Cancer Res Treat, 2021, 20: 1533033821990055. |
2 | TEMPLETON A J, MCNAMARA M G, ŠERUGA B,et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis[J]. J Natl Cancer Inst, 2014, 106(6): dju124. |
3 | VERNIERI C, MENNITTO A, PRISCIANDARO M, et al. The neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict efficacy of platinum-based chemotherapy in patients with metastatic triple negative breast cancer[J]. Sci Rep, 2018, 8(1): 8703. |
4 | 万广财, 孙洪帅, 朱 华, 等. NLR和PLR对接受一线含铂化疗的小细胞肺癌患者预后影响的Meta分析[J]. 吉林大学学报(医学版), 2021, 47(5): 1264-1272. |
5 | ALESSI J V, RICCIUTI B, ALDEN S L, et al. Low peripheral blood derived neutrophil-to-lymphocyte ratio (dNLR) is associated with increased tumor T-cell infiltration and favorable outcomes to first-line pembrolizumab in non-small cell lung cancer[J]. J Immunother Cancer, 2021, 9(11): e003536. |
6 | MANTOVANI A. Cancer: inflaming metastasis[J]. Nature, 2009, 457(7225): 36-37. |
7 | COLEY W B.Contribution to the knowledge of sarcoma[J]. Ann Surg, 1891,14(3): 199-220. |
8 | JANEWAY C A Jr. Approaching the asymptote? evolution and revolution in immunology[J]. Cold Spring Harb Symp Quant Biol, 1989, 54(Pt 1): 1-13. |
9 | CHALLENOR S, TUCKER D. SARS-CoV-2-induced remission of Hodgkin lymphoma[J]. Br J Haematol, 2021, 192(3): 415. |
10 | KARIN M. Nuclear factor-kappa B in cancer development and progression[J].Nature,2006,441(7092):431-436. |
11 | ANDZINSKI L, WU C F, LIENENKLAUS S, et al. Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN- beta [J]. Int J Cancer, 2015, 136(3): 572-583. |
12 | FRIDLENDER Z G, SUN J, KIM S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN[J]. Cancer Cell, 2009, 16(3): 183-194. |
13 | SZCZERBA B M, CASTRO-GINER F, VETTER M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature,2019,566(7745): 553-557. |
14 | TRUJILLO-SANTOS J, DI MICCO P, IANNUZZO M,et al. Elevated white blood cell count and outcome in cancer patients with venous thromboembolism. Findings from the RIETE Registry[J]. Thromb Haemost, 2008, 100(5): 905-911. |
15 | BONAVITA E, BROMLEY C P, JONSSON G,et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade[J]. Immunity, 2020, 53(6): 1215-1229.e8. |
16 | HE J, ZHOU M X, YIN J, et al. METTL3 restrains papillary thyroid cancer progression via m 6 A/c-Rel/IL-8-mediated neutrophil infiltration[J]. Mol Ther, 2021, 29(5): 1821-1837. |
17 | COFFELT S B, KERSTEN K, DOORNEBAL C W, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis[J]. Nature, 2015, 522(7556): 345-348. |
18 | XIAO Y S, CONG M, LI J T, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation[J]. Cancer Cell, 2021, 39(3): 423-437.e7. |
19 | TRELLAKIS S, BRUDEREK K, DUMITRU C A, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease[J]. Int J Cancer, 2011, 129(9): 2183-2193. |
20 | DONSKOV F, MAASE HVON DER. Impact of immune parameters on long-term survival in metastatic renal cell carcinoma[J]. J Clin Oncol, 2006, 24(13): 1997-2005. |
21 | BRASHER M I, MARTYNOWICZ D M, GRAFINGER O R, et al. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells[J]. J Biol Chem, 2017, 292(39): 16199-16210. |
22 | DERYUGINA E I, ZAJAC E, JUNCKER-JENSEN A,et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment[J]. Neoplasia, 2014, 16(10): 771-788. |
23 | TEIJEIRA Á, GARASA S, GATO M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.e8. |
24 | CHEN M B, HAJAL C, BENJAMIN D C, et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation[J]. Proc Natl Acad Sci U S A,2018,115(27): 7022-7027. |
25 | BAILEY S E, UKOUMUNNE O C, SHEPHARD E, et al. How useful is thrombocytosis in predicting an underlying cancer in primary care? a systematic review[J]. Fam Pract, 2017, 34(1): 4-10. |
26 | SIT M, AKTAS G, OZER B, et al. Mean platelet volume: an overlooked herald of malignant thyroid nodules[J]. Acta Clin Croat, 2019, 58(3): 417-420. |
27 | DINCEL O, BAYRAKTAR C. Evaluation of platelet indices as a useful marker in papillary thyroid carcinoma[J]. Bratisl Lek Listy,2017,118(3): 153-155. |
28 | LIU X X, HUANG Z K, HE X H, et al. Blood prognostic predictors of treatment response for patients with papillary thyroid cancer[J].Biosci Rep, 2020, 40(10): BSR20202544. |
29 | WANG Y H, KANG J K, ZHI Y F, et al. The pretreatment thrombocytosis as one of prognostic factors for gastric cancer: a systematic review and meta-analysis[J]. Int J Surg, 2018, 53: 304-311. |
30 | TANG M L, JIANG L, LIN Y Y, et al. Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition[J]. Oncotarget, 2017, 8(57): 97464-97475. |
31 | STONE R L, NICK A M, MCNEISH I A, et al. Paraneoplastic thrombocytosis in ovarian cancer[J]. N Engl J Med, 2012, 366(7): 610-618. |
32 | ELASKALANI O, FALASCA M, MORAN N, et al. The role of platelet-derived ADP and ATP in promoting pancreatic cancer cell survival and gemcitabine resistance[J]. Cancers (Basel), 2017, 9(10): E142. |
33 | LABELLE M, BEGUM S, HYNES R O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis[J]. Cancer Cell, 2011, 20(5): 576-590. |
34 | DILLY A K, EKAMBARAM P, GUO Y D, et al. Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB[J]. Int J Cancer, 2013, 133(8): 1784-1791. |
35 | MALEHMIR M, PFISTER D, GALLAGE S, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer[J]. Nat Med, 2019, 25(4): 641-655. |
36 | HAEMMERLE M, TAYLOR M L, GUTSCHNER T,et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling[J].Nat Commun,2017,8(1): 310. |
37 | BUCHHEIT C L, WEIGEL K J, SCHAFER Z T. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression[J]. Nat Rev Cancer, 2014, 14(9): 632-641. |
38 | RACHIDI S, METELLI A, RIESENBERG B, et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis[J]. Sci Immunol, 2017,2(11): eaai7911. |
39 | ROTHWELL P M, WILSON M, PRICE J F, et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials[J]. Lancet, 2012, 379(9826): 1591-1601. |
40 | THEISEN D J, DAVIDSON J T, BRISEÑO C G,et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens[J]. Science, 2018,362(6415): 694-699. |
41 | HUI E F, CHEUNG J, ZHU J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition[J]. Science,2017,355(6332): 1428-1433. |
42 | ROTTE A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 255. |
43 | WOUTERS M C A, NELSON B H. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer[J]. Clin Cancer Res, 2018, 24(24): 6125-6135. |
44 | ZANDER R, SCHAUDER D, XIN G, et al. CD4+T cell help is required for the formation of a cytolytic CD8+T cell subset that protects against chronic infection and cancer[J]. Immunity, 2019, 51(6): 1028-1042.e4. |
45 | XUE G, ZHENG N B, FANG J, et al. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells[J]. Cancer Cell, 2021, 39(12): 1610-1622.e9. |
46 | SALAZAR Y, ZHENG X, BRUNN D, et al. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer[J]. J Clin Invest, 2020, 130(7): 3560-3575. |
47 | YAN C, RICHMOND A. Th9 and Th17 cells: the controversial twins in cancer immunity[J]. J Clin Invest, 2020, 130(7): 3409-3411. |
48 | ASADZADEH Z, MOHAMMADI H, SAFARZADEH E, et al. The paradox of Th17 cell functions in tumor immunity[J]. Cell Immunol, 2017, 322: 15-25. |
49 | PEREZ L G, KEMPSKI J, MCGEE H M,et al.TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer[J]. Nat Commun, 2020, 11(1): 2608. |
50 | PACHA O, SALLMAN M A, EVANS S E. COVID-19: a case for inhibiting IL-17? [J]. Nat Rev Immunol, 2020, 20(6): 345-346. |
51 | SHARMA M, KHONG H, FA'AK F, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy[J]. Nat Commun, 2020, 11(1): 661. |
52 | TADA Y, TOGASHI Y, KOTANI D, et al. Targeting VEGFR2 with Ramucirumab strongly impacts effector/activated regulatory T cells and CD8+ T cells in the tumor microenvironment[J]. J Immunother Cancer, 2018, 6(1): 106. |
53 | SALIGRAMA N, ZHAO F, SIKORA M J, et al. Opposing T cell responses in experimental autoimmune encephalomyelitis[J].Nature,2019,572(7770):481-487. |
54 | CAPDEVILA J, WIRTH L J, ERNST T, et al. PD-1 blockade in anaplastic thyroid carcinoma[J]. J Clin Oncol, 2020, 38(23): 2620-2627. |
55 | KALLIES A, ZEHN D, UTZSCHNEIDER D T. Precursor exhausted T cells: key to successful immunotherapy? [J]. Nat Rev Immunol, 2020,20(2): 128-136. |
56 | CHEN Z Y, JI Z C, NGIOW S F, et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision[J]. Immunity, 2019, 51(5): 840-855.e5. |
57 | JOHNNIDIS J B, MUROYAMA Y, NGIOW S F,et al. Inhibitory signaling sustains a distinct early memory CD8+ T cell precursor that is resistant to DNA damage[J]. Sci Immunol, 2021, 6(55): eabe3702. |
58 | LIU L C, CHEN J H, BAE J, et al. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells[J]. Nat Biomed Eng, 2021, 5(11): 1261-1273. |
59 | KJELDSEN J W, LORENTZEN C L, MARTINENAITE E, et al. A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma[J]. Nat Med, 2021, 27(12): 2212-2223. |
60 | ECSEDI M, MCAFEE M S, CHAPUIS A G. The anticancer potential of T cell receptor-engineered T cells[J]. Trends Cancer, 2021, 7(1): 48-56. |
61 | CHEN J, LÓPEZ-MOYADO I F, SEO H, et al. NR4A transcription factors limit CAR T cell function in solid tumours[J]. Nature, 2019, 567(7749): 530-534. |
62 | MARIATHASAN S, TURLEY S J, NICKLES D,et al.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. |
63 | SUN X J, WU B G, CHIANG H C, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion[J].Nature,2021,599(7886):673-678. |
64 | GONG N Q, SHEPPARD N C, BILLINGSLEY M M, et al.Nanomaterials for T-cell cancer immunotherapy[J]. Nat Nanotechnol, 2021, 16(1): 25-36. |
65 | 王昭月, 魏 来, 黄 缘, 等. 程序性细胞死亡受体1及其配体抑制剂在肝细胞癌治疗中的应用进展[J]. 临床肝胆病杂志, 2021, 37(2): 437-443. |
[1] | 江洋,彭昭文,易舒婧,尤海玲,冯高飞,刘传波,胡凯文. 氩氦刀冷冻消融治疗肺黏液表皮样癌1例报告及文献复习[J]. 吉林大学学报(医学版), 2022, 48(4): 1040-1044. |
[2] | 孙艳,董新华,李东颖,郑庆芬,杨荟玉,刘冰熔. 结直肠癌患者一级亲属对结直肠癌筛查认知状况的调查分析[J]. 吉林大学学报(医学版), 2022, 48(4): 1065-1070. |
[3] | 陈海彬,周红光,邱雯莉,李文婷,周洪立. 肠道微生态对肠道免疫稳态和表观遗传修饰的调控作用及其与结直肠癌发生发展关系的研究进展[J]. 吉林大学学报(医学版), 2022, 48(4): 1071-1078. |
[4] | 曹秋婷,韩竞春,张晓飞. 沉默解旋酶BLM基因对结直肠癌细胞伊立替康化疗敏感性的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 657-667. |
[5] | 杨明星,董文,李冀. 贝母素乙对肺癌A549细胞凋亡的诱导作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 711-717. |
[6] | 王青慧,李波,胡传翠,聂明朝,郑小妹. miR-107对卵巢癌细胞免疫逃逸的调控和紫杉醇耐药性的影响[J]. 吉林大学学报(医学版), 2022, 48(3): 734-743. |
[7] | 刘迁,祁国萍,于华裔,戴宇阳,陆文斌,金建华. 结肠癌核心基因和独立预后因子筛选的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(3): 755-765. |
[8] | 潘延斌,苏家光,谭美乐,杨猛,覃文飞,黄榆秀,蒙世豪,黄耀辉,梁坚强,苏雪芳,黄姿婵,李建民. 沉默DNMT3a表达对银屑病样细胞周期进展和细胞增殖的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 773-782. |
[9] | 侯俊杰,米旭光,李晓男,李孝男,杨影,江显卓,周颖,倪志强,金宁一,方艳秋. 贝伐珠单抗联合FOLFIRI方案治疗晚期直肠癌并发直肠阴道瘘1例报告及文献复习[J]. 吉林大学学报(医学版), 2022, 48(3): 790-795. |
[10] | 张庆宇,夏德庚,徐庭瑞,矫君君,张天翼,赵竹兰,仲杨,张莉,马宁. 可注射型富血小板纤维蛋白在口腔疾病治疗中应用的研究进展[J]. 吉林大学学报(医学版), 2022, 48(3): 832-838. |
[11] | 王一涵,王奕丹,惠赫童,范馨元,王添琦,夏薇,刘丽梅. 急性淋巴细胞白血病移植瘤模型小鼠髓外浸润过程中血清Wnt5A和LINE-1启动子甲基化水平检测及其意义[J]. 吉林大学学报(医学版), 2022, 48(2): 284-290. |
[12] | 陈素贤,谷泽慧,马炀斐,谭琦,李琪,王亚帝. 芦丁对人结肠癌SW480细胞凋亡的促进作用及其作用机制[J]. 吉林大学学报(医学版), 2022, 48(2): 356-363. |
[13] | 田野,阿不都米吉提·阿不都克力木null,王鹏,沙漠,崔崎. 肿瘤相关巨噬细胞极化状态对前列腺癌干细胞自我更新能力和血管生成拟态的影响[J]. 吉林大学学报(医学版), 2022, 48(2): 374-382. |
[14] | 李承圣,包绮晗,郝晓燕,潘庆忠,王素珍,石福艳. 基于随机森林算法的胰腺癌术后预测模型构建[J]. 吉林大学学报(医学版), 2022, 48(2): 426-435. |
[15] | 许容容,陆远,周建明,彭丹丹,朱晓莉,韩淑华. 肺转移性副神经节瘤1例报告及文献复习[J]. 吉林大学学报(医学版), 2022, 48(2): 505-512. |
|