1 |
JI H W, DONG K, YAN Z Q, et al. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection[J]. Small, 2016, 12(45): 6200-6206.
|
2 |
MA X P, PAN H X, WU G S, et al. Ultrasound may be exploited for the treatment of microbial diseases[J]. Med Hypotheses, 2009, 73(1): 18-19.
|
3 |
LIU B, WANG D J, LIU B M,et al.The influence of ultrasound on the fluoroquinolones antibacterial activity[J].Ultrason Sonochem, 2011,18(5):1052-1056.
|
4 |
POURHAJIBAGHER M, RAHIMI-ESBOEI B, AHMADI H, et al. The anti-biofilm capability of nano-emodin-mediated sonodynamic therapy on multi-species biofilms produced by burn wound bacterial strains[J]. Photodiagnosis Photodyn Ther, 2021, 34: 102288.
|
5 |
ROY J, PANDEY V, GUPTA I, et al. Antibacterial sonodynamic therapy: current status and future perspectives[J]. ACS Biomater Sci Eng, 2021, 7(12): 5326-5338.
|
6 |
MISÍK V, RIESZ P. Free radical intermediates in sonodynamic therapy[J]. Ann N Y Acad Sci, 2000, 899: 335-348.
|
7 |
WORTHINGTON A E, THOMPSON J, RAUTH A M, et al. Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part Ⅰ: a search for free radical effects[J]. Ultrasound Med Biol, 1997, 23(7): 1095-1105.
|
8 |
YANG B W, CHEN Y, SHI J L. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev, 2019, 119(8): 4881-4985.
|
9 |
LI Y, ZHANG W, NIU J F, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano, 2012, 6(6): 5164-5173.
|
10 |
UMEMURA S, YUMITA N, NISHIGAKI R, et al. Mechanism of cell damage by ultrasound in combination with hematoporphyrin[J].Jpn J Cancer Res,1990,81(9): 962-966.
|
11 |
RAHMAN M M, NINOMIYA K, OGINO C, et al. Ultrasound-induced membrane lipid peroxidation and cell damage of Escherichia coli in the presence of non-woven TiO2 fabrics[J].Ultrason Sonochem,2010,17(4):738-743.
|
12 |
BEGUIN E, SHRIVASTAVA S, DEZHKUNOV N V,et al. Direct evidence of multibubble sonoluminescence using therapeutic ultrasound and microbubbles[J]. ACS Appl Mater Interfaces, 2019, 11(22): 19913-19919.
|
13 |
RIESZ P, BERDAHL D, CHRISTMAN C L. Free radical generation by ultrasound in aqueous and nonaqueous solutions[J]. Environ Health Perspect,1985, 64: 233-252.
|
14 |
MOAN J, BERG K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen[J]. Photochem Photobiol, 1991, 53(4): 549-553.
|
15 |
KRASOVITSKI B, FRENKEL V, SHOHAM S,et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects[J]. Proc Natl Acad Sci USA, 2011, 108(8): 3258-3263.
|
16 |
VATANSEVER F, DE MELO W C M A, AVCI P, et al. Antimicrobial strategies centered around reactive oxygen species: bactericidal antibiotics, photodynamic therapy, and beyond[J]. FEMS Microbiol Rev, 2013, 37(6): 955-989.
|
17 |
PANG X, XIAO Q C, CHENG Y, et al. Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections[J]. ACS Nano, 2019, 13(2): 2427-2438.
|
18 |
GREILLIER P, BAWIEC C, BESSIÈRE F, et al. Therapeutic ultrasound for the heart: state of the art[J]. IRBM, 2018, 39(4): 227-235.
|
19 |
POURHAJIBAGHER M, ROKN A R, BARIKANI H R,et al. Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: ex vivo study on dental implants[J]. Photodiagnosis Photodyn Ther, 2020, 31: 101834.
|
20 |
THARKAR P, VARANASI R, WONG W S F, et al. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond[J]. Front Bioeng Biotechnol, 2019, 7: 324.
|
21 |
RUNYAN C M, CARMEN J C, BECKSTEAD B L, et al. Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa[J]. J Gen Appl Microbiol, 2006, 52(5): 295-301.
|
22 |
COSTLEY D, NESBITT H, TERNAN N, et al. Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal-antimicrobial peptide conjugate[J]. Int J Antimicrob Agents, 2017, 49(1): 31-36.
|
23 |
ZHU P, CHEN Y, SHI J L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation[J]. ACS Nano, 2018, 12(4): 3780-3795.
|
24 |
FAN L H, IDRIS MUHAMMAD A, BILYAMINU ISMAIL B, et al. Sonodynamic antimicrobial chemotherapy: an emerging alternative strategy for microbial inactivation[J]. Ultrason Sonochem, 2021, 75: 105591.
|
25 |
LI J, MA L Y, LIAO X Y, et al. Ultrasound-induced Escherichia coli O157: H7 cell death exhibits physical disruption and biochemical apoptosis[J]. Front Microbiol, 2018, 9: 2486.
|
26 |
YOSHIDA M, KOBAYASHI H, TERASAKA S,et al. Sonodynamic therapy for malignant glioma using 220-kHz transcranial magnetic resonance imaging-guided focused ultrasound and 5-aminolevulinic acid[J]. Ultrasound Med Biol, 2019, 45(2): 526-538.
|
27 |
HAO D N, SONG Y B, CHE Z, et al. Calcium overload and in vitro apoptosis of the C6 glioma cells mediated by sonodynamic therapy (hematoporphyrin monomethyl ether and ultrasound)[J]. Cell Biochem Biophys, 2014, 70(2): 1445-1452.
|
28 |
XU Z Y, WANG K, LI X Q, et al. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells[J]. Ultrasonics, 2013, 53(1): 232-238.
|
29 |
CHEN Z Q, LI J H, SONG X M, et al. Use of a novel sonosensitizer in sonodynamic therapy of U251 glioma cells in vitro [J]. Exp Ther Med, 2012, 3(2): 273-278.
|
30 |
LOGAN K, FOGLIETTA F, NESBITT H, et al. Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel, doxorubicin and Rose Bengal[J]. Eur J Pharm Biopharm, 2019, 139: 224-231.
|
31 |
SHEVCHENKO S N, BURKHARDT M, SHEVAL E V, et al. Antimicrobial effect of biocompatible silicon nanoparticles activated using therapeutic ultrasound[J]. Langmuir, 2017, 33(10): 2603-2609.
|
32 |
REDISKE A M, ROEDER B L, BROWN M K, et al. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model[J]. Antimicrob Agents Chemother, 1999,43(5):1211-1214.
|
33 |
SUN D, PANG X, CHENG Y, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection[J]. ACS Nano, 2020, 14(2): 2063-2076.
|
34 |
ZHUANG D S, HOU C Y, BI L J, et al. Sonodynamic effects of hematoporphyrin monomethyl ether on Staphylococcus aureus in vitro [J]. FEMS Microbiol Lett, 2014, 361(2): 174-180.
|
35 |
WANG X N, IP M, LEUNG A W, et al. Sonodynamic action of hypocrellin B on methicillin-resistant staphylococcus aureus[J]. Ultrasonics, 2016, 65: 137-144.
|
36 |
POURHAJIBAGHER M, RAHIMI ESBOEI B, HODJAT M, et al. Sonodynamic excitation of nanomicelle curcumin for eradication of Streptococcus mutans under sonodynamic antimicrobial chemotherapy: enhanced anti-caries activity of nanomicelle curcumin[J]. Photodiagnosis Photodyn Ther, 2020, 30: 101780.
|
37 |
DADJOUR M F, OGINO C, MATSUMURA S,et al. Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2 [J]. Water Res, 2006, 40(6): 1137-1142.
|
38 |
SU K, TAN L, LIU X M, et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping[J]. ACS Nano, 2020, 14(2): 2077-2089.
|
39 |
SUN L N, WANG X W, GONG F, et al. Silicon nanowires decorated with platinum nanoparticles were applied for photothermal-enhanced sonodynamic therapy[J]. Theranostics, 2021, 11(19): 9234-9242.
|
40 |
WANG Z F, LIU C C, ZHAO Y M, et al. Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria[J]. Chem Eng J, 2019, 356: 811-818.
|
41 |
LIU Y J, LI Z Y, FAN F, et al. Boosting antitumor sonodynamic therapy efficacy of black phosphorus via covalent functionalization[J]. Adv Sci, 2021, 8(20): e2102422.
|
42 |
WU M Q, ZHANG Z Y, LIU Z R, et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing[J]. Nano Today, 2021, 37: 101104.
|
43 |
PANG X, LI D F, ZHU J, et al. Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics[J]. Nanomicro Lett, 2020, 12(1): 144.
|
44 |
SILHAVY T J, KAHNE D, WALKER S. The bacterial cell envelope[J]. Cold Spring Harb Perspect Biol, 2010, 2(5): a000414.
|
45 |
XU C S, DONG J H, IP M, et al. Sonodynamic action of chlorin e6 on staphylococcus aureus and Escherichia coli [J]. Ultrasonics, 2016, 64: 54-57.
|
46 |
YU Y, TAN L, LI Z Y, et al. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis[J]. ACS Nano, 2021, 15(6): 10628-10639.
|
47 |
AYOUB MOUBARECK C, HAMMOUDI HALAT D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen[J]. Antibiotics, 2020, 9(3): 119.
|
48 |
POURHAJIBAGHER M, POURAKBARI B, BAHADOR A. Contribution of antimicrobial photo-sonodynamic therapy in wound healing: an in vivo effect of curcumin-nisin-based poly (L-lactic acid) nanoparticle on Acinetobacter baumannii biofilms[J]. BMC Microbiol, 2022, 22(1): 28.
|
49 |
LIU X, YIN H, WENG C X, et al. Low-frequency ultrasound enhances antimicrobial activity of colistin-vancomycin combination against pan-resistant biofilm of Acinetobacter baumannii [J]. Ultrasound Med Biol, 2016, 42(8): 1968-1975.
|
50 |
RABIN N, ZHENG Y, OPOKU-TEMENG C, et al. Biofilm formation mechanisms and targets for developing antibiofilm agents[J]. Future Med Chem, 2015, 7(4): 493-512.
|
51 |
SHARMA D, MISBA L, KHAN A U. Antibiotics versus biofilm: an emerging battleground in microbial communities[J]. Antimicrob Resist Infect Control, 2019, 8: 76.
|
52 |
ALVES F, PAVARINA A C, MIMA E G O, et al. Antimicrobial sonodynamic and photodynamic therapies against candida albicans[J]. Biofouling, 2018, 34(4): 357-367.
|