| [1] |
FRISOLI M L, ESSIEN K, HARRIS J E. Vitiligo: mechanisms of pathogenesis and treatment[J]. Annu Rev Immunol, 2020, 38: 621-648.
|
| [2] |
CAVALIÉ M, EZZEDINE K, FONTAS E, et al. Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study[J]. J Invest Dermatol, 2015, 135(4): 970-974.
|
| [3] |
CHRISTO S N, PARK S L, MUELLER S N, et al. The multifaceted role of tissue-resident memory T cells[J]. Annu Rev Immunol, 2024, 42(1): 317-345.
|
| [4] |
RYAN G E, HARRIS J E, RICHMOND J M. Resident memory T cells in autoimmune skin diseases[J]. Front Immunol, 2021, 12: 652191.
|
| [5] |
RIDING R L, HARRIS J E. The role of memory CD8+ T cells in vitiligo[J]. J Immunol, 2019, 203(1): 11-19.
|
| [6] |
MIGAYRON L, MERHI R, SENESCHAL J, et al. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive[J]. J Allergy Clin Immunol, 2024, 153(3): 606-614.
|
| [7] |
SKON C N, LEE J Y, ANDERSON K G, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells[J]. Nat Immunol, 2013, 14(12): 1285-1293.
|
| [8] |
ZITTI B, HOFFER E, ZHENG W N, et al. Human skin-resident CD8+ T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a[J]. Immunity, 2023, 56(6): 1285-1302.e7.
|
| [9] |
YANG K, KALLIES A. Tissue-specific differentiation of CD8+ resident memory T cells[J]. Trends Immunol, 2021, 42(10): 876-890.
|
| [10] |
ZAID A, HOR J L, CHRISTO S N, et al. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation[J]. J Immunol, 2017, 199(7): 2451-2459.
|
| [11] |
TOKURA Y, PHADUNGSAKSAWASDI P, KURIHARA K, et al. Pathophysiology of skin resident memory T cells[J]. Front Immunol, 2021, 11: 618897.
|
| [12] |
SRIVASTAVA R, HERNÁNDEZ-RUIZ M, KHAN A A, et al. CXCL17 chemokine-dependent mobilization of CXCR8+CD8+ effector memory and tissue-resident memory T cells in the vaginal mucosa is associated with protection against genital herpes[J]. J Immunol, 2018, 200(8): 2915-2926.
|
| [13] |
FONSECA R, BEURA L K, QUARNSTROM C F, et al. Developmental plasticity allows outside-in immune responses by resident memory T cells[J]. Nat Immunol, 2020, 21(4): 412-421.
|
| [14] |
KLICZNIK M M, MORAWSKI P A, HÖLLBACHER B, et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals[J]. Sci Immunol, 2019, 4(37): eaav8995.
|
| [15] |
BEHR F M, PARGA-VIDAL L, KRAGTEN N A M, et al. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses[J]. Nat Immunol, 2020, 21(9): 1070-1081.
|
| [16] |
KOK L, MASOPUST D, SCHUMACHER T N. The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues[J]. Nat Rev Immunol, 2022, 22(5): 283-293.
|
| [17] |
MATOS T R, GEHAD A, TEAGUE J E, et al. Central memory T cells are the most effective precursors of resident memory T cells in human skin[J]. Sci Immunol, 2022, 7(70): eabn1889.
|
| [18] |
FRIZZELL H, FONSECA R, CHRISTO S N, et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes[J]. Sci Immunol, 2020, 5(46): eaay9283.
|
| [19] |
CROWL J T, HEEG M, FERRY A, et al. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments[J]. Nat Immunol, 2022, 23(7): 1121-1131.
|
| [20] |
ADACHI T, KOBAYASHI T, SUGIHARA E, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma[J]. Nat Med, 2015, 21(11): 1272-1279.
|
| [21] |
REN H M, LUKACHER A E. IL-21 in homeostasis of resident memory and exhausted CD8 T cells during persistent infection[J]. Int J Mol Sci, 2020, 21(18): 6966.
|
| [22] |
THOMPSON E A, DARRAH P A, FOULDS K E, et al. Monocytes acquire the ability to prime tissue-resident T cells via IL-10-mediated TGF-β release[J]. Cell Rep, 2019, 28(5): 1127-1135.e4.
|
| [23] |
CHRISTO S N, EVRARD M, PARK S L, et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity[J]. Nat Immunol, 2021, 22(9): 1140-1151.
|
| [24] |
DIJKGRAAF F E, KOK L, SCHUMACHER T N M. Formation of tissue-resident CD8+ T-cell memory[J]. Cold Spring Harb Perspect Biol, 2021, 13(8): a038117.
|
| [25] |
IBORRA S, MARTÍNEZ-LÓPEZ M, KHOUILI S C, et al. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells[J]. Immunity, 2016, 45(4): 847-860.
|
| [26] |
JARJOUR N N, DALZELL T S, MAURICE N J, et al. Collaboration between interleukin-7 and-15 enables adaptation of tissue-resident and circulating memory CD8+ T cells to cytokine deficiency[J]. Immunity, 2025, 58(3): 616-631.e5.
|
| [27] |
DUHEN T, GEIGER R, JARROSSAY D, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells[J]. Nat Immunol, 2009, 10(8): 857-863.
|
| [28] |
WHITLEY S K, LI M S, KASHEM S W, et al. Local IL-23 is required for proliferation and retention of skin-resident memory TH17 cells[J]. Sci Immunol, 2022, 7(77): eabq3254.
|
| [29] |
CHAMBERS E S, VUKMANOVIC-STEJIC M. Skin barrier immunity and ageing[J]. Immunology, 2020, 160(2): 116-125.
|
| [30] |
PARK S L, CHRISTO S N, WELLS A C, et al. Divergent molecular networks program functionally distinct CD8+ skin-resident memory T cells[J]. Science, 2023, 382(6674): 1073-1079.
|
| [31] |
MACKAY L K, MINNICH M, KRAGTEN N A M, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes[J]. Science, 2016, 352(6284): 459-463.
|
| [32] |
HARRISON O J, LINEHAN J L, SHIH H Y, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury[J]. Science, 2019, 363(6422): eaat6280.
|
| [33] |
CHEUK S, SCHLUMS H, GALLAIS SÉRÉZAL I, et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin[J]. Immunity, 2017, 46(2): 287-300.
|
| [34] |
JACQUEMIN C, MARTINS C, LUCCHESE F, et al. NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo[J]. J Invest Dermatol, 2020, 140(6): 1143-1153.
|
| [35] |
RICHMOND J M, STRASSNER J P, RASHIGHI M, et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo[J]. J Invest Dermatol, 2019, 139(4): 769-778.
|
| [36] |
SEONG S H, OH S H. Up-and-coming drugs for the treatment of vitiligo[J]. Ann Dermatol, 2024, 36(4): 197-208.
|
| [37] |
XU Z J, CHEN D M, HU Y C, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns[J]. Nature, 2022, 601(7891): 118-124.
|
| [38] |
RESCHKE R, DEITERT B, ENK A H, et al. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma-two sides of the same coin?[J]. Front Immunol, 2024, 15: 1385781.
|
| [39] |
CHEN D M, XU Z J, CUI J, et al. A mouse model of vitiligo based on endogenous auto-reactive CD8 + T cell targeting skin melanocyte[J]. Cell Regen, 2022, 11(1): 31.
|
| [40] |
KASSAB A, KHALIJ Y, AYED Y, et al. Serum inflammatory and oxidative stress markers in patients with vitiligo[J]. J Clin Med, 2023, 12(18): 5861.
|
| [41] |
RICHMOND J M, STRASSNER J P, ZAPATA L JR, et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo[J]. Sci Transl Med, 2018, 10(450): eaam7710.
|
| [42] |
CHEN X G, GUO W N, CHANG Y Q, et al. Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo[J]. Free Radic Biol Med, 2019, 139: 80-91.
|
| [43] |
LIU H Q, WANG Y H, LE Q Q, et al. The IFN-γ-CXCL9/CXCL10-CXCR3 axis in vitiligo: Pathological mechanism and treatment[J]. Eur J Immunol, 2024, 54(4): e2250281.
|
| [44] |
AZZOLINO V, ZAPATA L, GARG M, et al. Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells[J]. J Invest Dermatol, 2021, 141(1): 182-184.
|
| [45] |
YAMAGUCHI Y, PEEVA E, DEL DUCA E, et al. Ritlecitinib, a JAK3/TEC family kinase inhibitor, stabilizes active lesions and repigments stable lesions in vitiligo[J]. Arch Dermatol Res, 2024, 316(7): 478.
|
| [46] |
GUTTMAN-YASSKY E, DEL DUCA E, ROSA J C DA, et al. Improvements in immune/melanocyte biomarkers with JAK3/TEC family kinase inhibitor ritlecitinib in vitiligo[J]. J Allergy Clin Immunol, 2024, 153(1): 161-172.
|
| [47] |
YOKOI K, WATANABE R, KUME M, et al. Melanocyte-specific CD49a+CD8+ T cells in vitiligo lesion potentiate to maintain activity during systemic steroid therapy[J]. J Dermatol, 2023, 50(5): 710-714.
|
| [48] |
XU Y L, ZHANG B X, LIN M, et al. Discovery of resident memory T cells in inflammatory vitiligo: a case report[J]. Medicine, 2022, 101(41): e31007.
|
| [49] |
OKAMURA K, KABASAWA T, SAITO T, et al. Resident memory T cell contributes to the phenotype of inflammatory vitiligo[J]. J Dermatol Sci, 2024, 113(2): 74-76.
|
| [50] |
BONIFACE K, SENESCHAL J. Vitiligo as a skin memory disease: The need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells[J]. Exp Dermatol, 2019, 28(6): 656-661.
|
| [51] |
TANG Q, FAKIH H H, ZAIN UI ABIDEEN M, et al. Rational design of a JAK1-selective siRNA inhibitor for the modulation of autoimmunity in the skin[J]. Nat Commun, 2023, 14(1): 7099.
|
| [52] |
TURNER D L, FARBER D L. Mucosal resident memory CD4 T cells in protection and immunopathology[J]. Front Immunol, 2014, 5: 331.
|
| [53] |
WU X P, CHEONG L Y, YUAN L, et al. Islet-resident memory T cells orchestrate the immunopathogenesis of type 1 diabetes through the FABP4-CXCL10 axis[J]. Adv Sci, 2024, 11(30): 2308461.
|
| [54] |
MAJID I, IMRAN S, BATOOL S. Apremilast is effective in controlling the progression of adult vitiligo: a case series[J]. Dermatol Ther, 2019, 32(4): e12923.
|
| [55] |
WEI Y J, WANG T M, NIE X Q, et al. 1, 25-dihydroxyvitamin D3 provides benefits in vitiligo based on modulation of CD8+ T cell glycolysis and function[J]. Nutrients, 2023, 15(21): 4697.
|
| [56] |
ALI N W, ZIRAK B, RODRIGUEZ R S, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell, 2017, 169(6): 1119-1129.e11.
|
| [57] |
TANIMURA S, TADOKORO Y, INOMATA K, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells[J]. Cell Stem Cell, 2011, 8(2): 177-187.
|
| [58] |
LIU Z, HU X T, LIANG Y Q, et al. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche[J]. Nat Immunol, 2022, 23(7): 1086-1097.
|
| [59] |
SHAH F, GIRI P S, BHARTI A H, et al. Compromised melanocyte survival due to decreased suppression of CD4+ & CD8+ resident memory T cells by impaired TRM-regulatory T cells in generalized vitiligo patients[J]. Exp Dermatol, 2024, 33(1): e14982.
|