吉林大学学报(医学版) ›› 2024, Vol. 50 ›› Issue (1): 198-207.doi: 10.13481/j.1671-587X.20240124

• 临床研究 • 上一篇    

基于乳酸代谢相关基因的头颈部鳞状细胞癌分子亚型和临床特征的生物信息学分析

杨紫煦1,苏畅1,王波元1,刘冲1,李明贺1,2()   

  1. 1.吉林大学口腔医院口腔颌面外科,吉林 长春 130021
    2.吉林大学第二医院口腔科,吉林 长春 130022
  • 收稿日期:2023-04-13 出版日期:2024-01-28 发布日期:2024-01-31
  • 通讯作者: 李明贺 E-mail:liminghe@jlu.edu.cn
  • 作者简介:杨紫煦(1998-),女,内蒙古自治区赤峰市人,在读硕士研究生,主要从事口腔颌面外科临床方面的研究。
  • 基金资助:
    吉林省财政厅科技项目(JCSZ2019378-13)

Bioinformatics analysis on molecular subtypes and clinical characteristics of head and neck squamous cell carcinoma based on genes associated with lactate metabolism

Zixu YANG1,Chang SU1,Boyuan WANG1,Chong LIU1,Minghe LI1,2()   

  1. 1.Department of Oral and Maxillofacial Surgery,Stomatology Hospital,Jilin University,Changchun 130021,China
    2.Department of Stomatology,Second Hospital,Jilin University,Changchun 130022,China
  • Received:2023-04-13 Online:2024-01-28 Published:2024-01-31
  • Contact: Minghe LI E-mail:liminghe@jlu.edu.cn

摘要:

目的 筛选头颈部鳞状细胞癌(HNSCC)差异预后乳酸代谢相关基因 (LRGs),构建 HNSCC 的LRGs预后模型,并阐明其潜在的作用机制。 方法 由癌症基因组图谱(TCGA)数据库和基因表达综合(GEO)数据库获取HNSCC基因表达及临床数据,由GeneCards数据库中获取 LRGs, 采用 R软件筛选 HNSCC的LRGs。采用单因素Cox回归分析得到预后相关基因,基于预后相关LRGs鉴定出2种不同亚型,采用Kaplan-Meier(K-M)曲线分析比较2组患者预后,采用CIBERSORT算法进行2组患者间的免疫相关分析。采用多因素 Cox回归分析和LASSO回归分析构建预后模型,采用受试者工作特征曲线(ROC)和 K-M生存曲线评估LRGs 与 HNSCC 患者生存和预后的关系。采用GSE27020、GSE41613 和 GSE65858数据集验证预后模型。基于风险评分进行分组,并进行免疫相关分析和肿瘤相关评分分析。 结果 通过TCGA数据库从 HNSCC样本中差异分析筛选出1 196个LRGs,单因素 Cox 回归分析筛选出 27个差异表达基因(DEGs)与 HNSCC患者预后相关,根据预后相关基因鉴定出2种不同的LRGs亚型(分组1和分组2),K-M生存曲线显示分组2患者总生存期(OS)明显高于分组1,分组 2患者免疫细胞浸润水平明显高于分组1。多因素 Cox回归分析和LASSO回归分析筛选出9个LRGs,包括次黄嘌呤磷酸核糖基转移酶 1(HPRT1)、淀粉样蛋白前体蛋白 (APP)、糖原磷酸化酶(PYGL)、尿激酶型纤溶酶原激活物(PLAU)、大麻素受体2(CNR2)、斯钙素2 (STC2)、核苷酸结合寡聚化结构域样受体1(NLRP1)、整合素连接激酶(ILK)和叉头框蛋白B1(FOXB1),构建预后模型,K-M曲线和ROC 曲 线 显 示上述9个基因表达水平与 HNSCC 患者生存和预后有关联 ,且均具有良好的 1、2 和 3 年生存预测作用,ROC 曲线下面积(AUC)均大于0.650,且预后模型的预后预测作用在GSE27020、GSE41613 和 GSE65858数据集中得到验证。根据风险评分分类的患者具有可区分的免疫状态。 结论 基于生物信息学方法筛选出的 HNSCC 差异表达LRGs与 HNSCC 患者生存和预后有关联,由 9 个LRGs构建的预后模型可预测HNSCC患者的生存情况和治疗反应。

关键词: 头颈部鳞状细胞癌, 乳酸代谢, 免疫浸润, 生物信息学, LASSO回归分析

Abstract:

Objective To select the differential prognostic lactic acid metabolism-related genes (LRGs) of the head and neck squamous cell carcinoma (HNSCC) to construct the LRGs prognostic model of HNSCC, and to clarify the potential mechanism. Methods The HNSCC gene expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) Databases, the LRGs were identified through GeneCards Database, and R software was used to screen out the LRGs of HNSCC; univariate Cox regression analysis was used to identify prognosis-related genes; two different subtypes were identified based on the prognostis-related LRGs; Kaplan-Meier (K-M) curve analysis was used to compare the prognosis of the patients between two groups; CIBERSORT algorithm was used to perform the immuno-correlation analysis between two groups;multivariate Cox regression analysis and LASSO regression analysis were used to construct the prognostic model; receiver operating characteristic curve (ROC) and K-M survival curve were used to assess the relationship between LRGs and survival and prognosis of the HNSCC patients. The prognostic model was validated by GSE27020, GSE41613,and GSE65858 datasets.The experiment were grouped based on risk score,and immune-related analysis and tumor score analysis were performed. Results The TCGA Database differential analysis results showed that 1 196 LRGs were identified from HNSCC samples; univariate Cox regression analysis selected 27 differentially expressed genes (DEGs) associated with the prognosis of the HNSCC patients. Two different LRGs subtypes (Group 1 and Group 2) were identified according to the prognosis-related genes. The K-M survival curves results showed that the overall survival (OS) of the patients in Group 2 was significantly higher than that in Group 1, and the immune cell expression amount of the patients in Group 2 was also higher than that in group 1. The multivariate Cox regression and LASSO regression analysis results screened out 9 LRGs, including hypoxanthine phosphoribosyltransferase 1 (HPRT1), amyloid precursor protein (APP), glycogen phosphorylase L(PYGL),urokinase-type plasminogen activator(PLAU), cannabinoid receptor 2 (CNR2), stanniocalcin 2 (STC2), nucleotide binding oligomerization domain-like receptor protein 1 (NLRP1), integrin-linked kinase (ILK), and forkhead box B1 (FOXB1);the prognostic model was constructed.The K-M and ROC curve results indicated that the expression levels of above 9 genes were associated with the survival and prognosis of the HNSCC patients, providing good 1-year, 2-year, and 3-year survival prediction effect, and the area under ROC curve (AUC) values were all greater than 0.650. Furthermore, the predictive ability of the prognosis model was validated in GSE27020, GSE41613, and GSE65858 datasets. The patients classified based on the risk scores had distinguishable immune statuses. Conclusion The differentially expressed LRGs of HNSCC screened by bioinformatics methods are related to the survival and prognosis of the HNSCC patients; the prognostic model constructed by 9 LRGs can predict the survival status and treatment response of the HNSCC patients.

Key words: Head and neck squamous carcinoma, Lactic acid metabolism, Immune infiltration, Bioinformatics, LASSO regression analysis

中图分类号: 

  • R782