吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1645-1652.doi: 10.13229/j.cnki.jdxbgxb20190550

• 材料科学与工程 • 上一篇    

微合金化2205双相不锈钢组织及性能

向红亮1,2(),陈盛涛1,邓丽萍1,张伟3,詹土生4   

  1. 1.福州大学 机械工程及自动化学院, 福州 350108
    2.福州大学 先进制造学院, 福建 晋江 362200
    3.中国宝武钢铁集团有限公司 不锈钢技术中心, 上海 201900
    4.宝钢德盛不锈钢有限公司, 福州 350600
  • 收稿日期:2019-05-31 出版日期:2020-09-01 发布日期:2020-09-16
  • 作者简介:向红亮(1972-),男,教授,博士生导师.研究方向:铸造合金材料及成型工艺.E-mail:hlxiang@fzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51601039);福建省科技重大专项项目(2017HZ0001-2);福建省2016年产业技术联合创新专项项目(FG-2016001);上海市青年科技启明星计划项目(17QB1400100)

Microstructure and properties of microalloying 2205 duplex stainless steel

Hong-liang XIANG1,2(),Sheng-tao CHEN1,Li-ping DENG1,Wei ZHANG3,Tu-sheng ZHAN4   

  1. 1.School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    2.School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
    3.Technology Center, China Baowu Steel Group,Shanghai 201900, China
    4.Baosteel-desheng Co. , Ltd. , Fuzhou 350600, China
  • Received:2019-05-31 Online:2020-09-01 Published:2020-09-16

摘要:

通过添加Cu-Ag合金颗粒制备了Ag量为0.07%和0.10%的2205固溶双相不锈钢,同时制备了母材2205和含Cu2205固溶材料进行对比分析。利用光学显微镜(OM)、扫描电镜(SEM)、万能拉伸实验机、电化学工作站和覆膜法,对比研究了4种材料的显微组织、力学性能、耐蚀性能和抗菌性能。结果表明:Ag量增加会使组织中α增多,γ减少;两种含Ag材料组织中均存在含Ag相,粒径介于1~6 μm的Ag相分布于α基体及α/γ相界处,粒径介于80~400 nm的Ag相分布于γ相中;与母材2205相比,添加Cu可提高材料的抗拉强度,但使其延伸率降低;Ag量增加可同时提高材料的抗拉强度和延伸率;所有材料中,含0.10%Ag量的材料综合力学性能最佳;在3.5%NaCl介质中,含Cu2205材料的耐蚀性能最优,Ag量增加,材料钝化膜稳定性及耐腐蚀性能先提高后降低;含Ag2205材料抗菌率随接触时间延长而提高,高Ag量材料一直都有良好的抗菌性能,母材2205和含Cu2205固溶材料不具备抗菌性能。

关键词: 材料合成与加工工艺, 含Ag2205双相不锈钢, 含Ag相, 力学性能, 耐蚀性能, 抗菌性能

Abstract:

2205 duplex stainless steels containing 0.07% and 0.01% Ag were respectively prepared by adding Cu-Ag alloy particles. Meanwhile, the base material 2205 and Cu-bearing 2205 were prepared for comparison with Ag-bearing 2205. The microstructure, mechanical properties, corrosion resistance and antibacterial properties of the four materials were investigated by Optical Microscope(OM), Scanning Electron Microscope(SEM), tensile test, electrochemical workstation and film mulching method. Results reveale that the increase of Ag content increases the amount of α phase and decreases the amount of γ phase in the microstructure. Ag-containing phases exist in both Ag-containing materials. Ag-phases with particle sizes ranging from 1 to 6 μm are distributed at the interface of α matrix and in α/γ phase, while Ag-phases with particle sizes ranging from 80 to 400 nm are distributed in γ phase. Compared with base material 2205, adding of Cu can improve the tensile strength of the materials, but decrease its elongation. The tensile strength and elongation of the materials both increase with the Ag content. The material containing 0.1% Ag exhibits the best comprehensive mechanical properties. In 3.5% NaCl medium, Cu-bearing 2205 exhibits the best corrosion resistance. With the increase in Ag content, the stability and corrosion resistance of passivation film first increases and then decreases. The antibacterial rate of Ag-bearing 2205 materials increases with the contact time. The high Ag-bearing materials exhibit a good antibacterial property, and the base material 2205 and Cu-bearing 2205 do not have antibacterial properties.

Key words: material synthesis and processing technology, Ag-bearing 2205 duplex stainless steel, Ag-bearing phase, mechanical properties, corrosion resistance, antibacterial property

中图分类号: 

  • TG172

表1

4种试样化学成分 (%)"

材料CSiMnSPCrNiMoCuAgFe
A0.010.130.790.010.0121.875.493.050.01-Bal.
B0.010.130.790.010.0121.865.503.051.34-Bal.
C0.010.130.790.010.0121.885.483.051.340.07Bal.
D0.010.130.790.010.0121.795.463.051.340.10Bal.

图1

材料A,B,C,D金相图"

图2

材料A,B,C,D相含量"

图3

含Ag试样SEM背散射电子成像图"

图4

试样力学性能"

图5

试样极化曲线"

表2

四种试样极化曲线参数"

材料Icorr/(10-6A?cm-2)
A5.416
B4.829
C5.208
D5.592

图6

试样A,B,C,D点蚀形貌"

表3

试样C、D点蚀坑亮白区的主要组成元素质量分数 (%)"

区域CrNiCuAgMnFe
014.342.015.2372.671.206.32
025.231.526.7175.660.987.49

图7

试样A,B,C,D Nyquist图"

图8

(Rs(QRt))等效电路"

表4

四种试样EIS(Rs(QRt))等效电路拟合结果"

材料Rs/(Ω·cm2)C/10-5Rt/(106Ω·cm2)n
A4.1025.6285.7230.865
B4.3084.5286.9760.874
C4.1245.3286.0710.863
D4.1746.0285.4790.870

图9

与菌液作用12 h后各试样杀菌效果图"

表5

各试样与菌液作用不同时间的抗菌率"

材料细菌数/(cfu?ml-1)R/%
3 h12 h24 h3 h12 h24 h
A7.15×1056.62×1056.98×105000
B7.03×1054.52×1054.09×105031.741.4
C5.65×104<10<1092.1>99.9>99.9
D2.80×103<10<1099.6>99.9>99.9
1 吴玖. 双相不锈钢[M]. 北京: 冶金工业出版社, 1999.
2 Li M, Li N, Xu D, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. Journal of Materials Science & Technology, 2015, 31(3): 243-251.
3 Oguzie E E, Li J, Liu Y, et al. Electrochemical corrosion behavior of novel Cu-containing antimicrobial austenitic and ferritic stainless steels in chloride media[J]. Journal of Materials Science, 2010, 45(21): 5902-5909.
4 Dan Z, Ni H, Xu B, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492(1/2): 93-100.
5 Xi T, Yang C, Babar S M, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Materials & Design, 2015, 87: 303-312.
6 南黎, 刘永前, 杨伟超, 等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43(10): 1065-1070.
Nan Li, Liu Yong-qian, Yang Wei-chao, et al. Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metallurgica Sinica, 2007, 43(10): 1065-1070.
7 向红亮, 范金春, 刘东, 等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 Ⅰ.富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
Xiang Hong-liang, Fan Jin-chun, Liu Dong, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel Ⅰ. microstructure and evolution of copper-rich phase [J]. Acta Metallurgica Sinica, 2012, 48(9): 1081-1088.
8 良维杰. SUS430含铜抗菌不锈钢之性质研究[D]. 台湾: 国立台湾大学工学院, 2000.
Liang Wei-jie. Performance study of Cu-containing antibacterial SUS 430 stainless steel[D]. Taiwan: School of Engineering, National Taiwan University, 2000.
9 Yokata T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Technical Report, 2001, 2(33): 88-91.
10 Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metallurgica Sinica(English Letters), 2014, 27(3): 539-545.
11 杨柯, 董加胜, 陈四红, 等. 含Cu抗菌不锈钢的工艺与耐蚀性能[J]. 材料研究学报, 2006, 20(5): 523-527.
Yang Ke, Dong Jia-sheng, Chen Si-hong, et al. The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels[J]. Chinese Journal of Materials Research, 2006, 20(5): 523-527.
12 向红亮, 范金春, 刘东, 等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 Ⅱ.耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
Xiang Hong-liang, Fan Jin-chun, Liu Dong, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel II. corrosion resistance and antibacterial properties[J]. Acta Metallurgica Sinica, 2012, 48(9): 1089-1096.
13 郑至轩. 添加金属铜对SUS304不锈钢显微组织及抗菌性质影响[D]. 台湾: 台北科技大学工程学院, 2011.
Zheng Zhi-xuan. Microstructure and antibacterial properties of Cu-modified SUS 304 stainless steel[D]. Taiwan: School of Engineering, National Taipei University of Technology, 2011.
14 Sreekumari K R, Kanavillil N, Takao K, et al. Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion[J]. ISIJ International2003, 43(11): 1799-1806.
15 Chiang W C, Tseng I S, Moller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Materials Chemistry & Physics, 2010, 119(1/2): 123-130.
16 Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications. Part I: microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27(5): 449-457.
17 轩阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学材料学院, 2014.
Xuan Yang. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel [D]. Beijing: School of Materials Science and Engineering, Tsinghua University, 2014.
18 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
Xiang Hong-liang, Guo Pei-pei, Liu Dong. Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(10): 1210-1216.
19 郭培培, 向红亮, 李敬鑫, 等. Cu-Ag合金雾化工艺研究[J]. 特种铸造及有色合金, 2013, 33(5): 470-473.
Guo Pei-pei, Xiang Hong-liang, Li Jing-xin, et al. Atomization of Cu-Ag alloy[J]. Special Casting & Nonferrous Alloys, 2013, 33(5): 470-473.
20 朱峰成. 银含量对2205双相不锈钢显微组织及高温机械性质影响之研究[D]. 台湾: 国立高雄大学工学院, 2010.
Zhu Feng-cheng. Effect of silver content on microstructure and high temperature mechanical properties of 2205 duplex stainless steel[D]. Taiwan: School of Engineering, National University of Kaohsiung, 2010.
21 杨才福, 张永权. 铜含量对低碳HSLA钢力学性能的影响[J]. 特殊钢, 1999, 20(1): 27-30.
Yang Cai-fu, Zhang Yong-quan. Effect of Cu content on mechanical properties of low carbon HSLA steel[J]. Special Steel, 1999, 20(1): 27-30.
22 牛绍蕊. 不锈钢的电化学腐蚀性能研究[D]. 兰州: 兰州理工大学材料科学与工程学院, 2010.
Niu Shao-rui. The research of eleetrochemical corrosion resistance of stainless steel[D]. Lanzhou: School of Materials Science and Engineering, Lanzhou University of Technology, 2010.
23 Sourisseau T, Chauveau E, Baroux B. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media[J]. Corrosion Science, 2005, 47(5): 1097-1117.
[1] 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525.
[2] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[3] 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90.
[4] 庄蔚敏,施宏达,解东旋,杨冠男. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106.
[5] 关庆丰,姚欣雯,杨洋,张凌燕,刘迪,李晨,吕鹏. 强流脉冲电子束作用下TC4钛合金表面Cr合金层制备及性能[J]. 吉林大学学报(工学版), 2019, 49(6): 2002-2009.
[6] 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001.
[7] 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599.
[8] 谷晓燕,刘东锋,刘婧,孙大千,马会峰. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600-1607.
[9] 李欣,孙延朋,王丹,陈军绪,谷诤巍,徐虹. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1608-1614.
[10] 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621.
[11] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[12] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
[13] 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271.
[14] 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279.
[15] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!