吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1645-1652.doi: 10.13229/j.cnki.jdxbgxb20190550
• 材料科学与工程 • 上一篇
Hong-liang XIANG1,2(),Sheng-tao CHEN1,Li-ping DENG1,Wei ZHANG3,Tu-sheng ZHAN4
摘要:
通过添加Cu-Ag合金颗粒制备了Ag量为0.07%和0.10%的2205固溶双相不锈钢,同时制备了母材2205和含Cu2205固溶材料进行对比分析。利用光学显微镜(OM)、扫描电镜(SEM)、万能拉伸实验机、电化学工作站和覆膜法,对比研究了4种材料的显微组织、力学性能、耐蚀性能和抗菌性能。结果表明:Ag量增加会使组织中α增多,γ减少;两种含Ag材料组织中均存在含Ag相,粒径介于1~6 μm的Ag相分布于α基体及α/γ相界处,粒径介于80~400 nm的Ag相分布于γ相中;与母材2205相比,添加Cu可提高材料的抗拉强度,但使其延伸率降低;Ag量增加可同时提高材料的抗拉强度和延伸率;所有材料中,含0.10%Ag量的材料综合力学性能最佳;在3.5%NaCl介质中,含Cu2205材料的耐蚀性能最优,Ag量增加,材料钝化膜稳定性及耐腐蚀性能先提高后降低;含Ag2205材料抗菌率随接触时间延长而提高,高Ag量材料一直都有良好的抗菌性能,母材2205和含Cu2205固溶材料不具备抗菌性能。
中图分类号:
1 | 吴玖. 双相不锈钢[M]. 北京: 冶金工业出版社, 1999. |
2 | Li M, Li N, Xu D, et al. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water[J]. Journal of Materials Science & Technology, 2015, 31(3): 243-251. |
3 | Oguzie E E, Li J, Liu Y, et al. Electrochemical corrosion behavior of novel Cu-containing antimicrobial austenitic and ferritic stainless steels in chloride media[J]. Journal of Materials Science, 2010, 45(21): 5902-5909. |
4 | Dan Z, Ni H, Xu B, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J]. Thin Solid Films, 2005, 492(1/2): 93-100. |
5 | Xi T, Yang C, Babar S M, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Materials & Design, 2015, 87: 303-312. |
6 | 南黎, 刘永前, 杨伟超, 等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43(10): 1065-1070. |
Nan Li, Liu Yong-qian, Yang Wei-chao, et al. Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metallurgica Sinica, 2007, 43(10): 1065-1070. | |
7 | 向红亮, 范金春, 刘东, 等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 Ⅰ.富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088. |
Xiang Hong-liang, Fan Jin-chun, Liu Dong, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel Ⅰ. microstructure and evolution of copper-rich phase [J]. Acta Metallurgica Sinica, 2012, 48(9): 1081-1088. | |
8 | 良维杰. SUS430含铜抗菌不锈钢之性质研究[D]. 台湾: 国立台湾大学工学院, 2000. |
Liang Wei-jie. Performance study of Cu-containing antibacterial SUS 430 stainless steel[D]. Taiwan: School of Engineering, National Taiwan University, 2000. | |
9 | Yokata T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property[J]. Kawasaki Steel Technical Report, 2001, 2(33): 88-91. |
10 | Xuan Y, Zhang C, Fan N Q, et al. Antibacterial property and precipitation behavior of Ag-added 304 austenitic stainless steel[J]. Acta Metallurgica Sinica(English Letters), 2014, 27(3): 539-545. |
11 | 杨柯, 董加胜, 陈四红, 等. 含Cu抗菌不锈钢的工艺与耐蚀性能[J]. 材料研究学报, 2006, 20(5): 523-527. |
Yang Ke, Dong Jia-sheng, Chen Si-hong, et al. The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels[J]. Chinese Journal of Materials Research, 2006, 20(5): 523-527. | |
12 | 向红亮, 范金春, 刘东, 等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 Ⅱ.耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096. |
Xiang Hong-liang, Fan Jin-chun, Liu Dong, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel II. corrosion resistance and antibacterial properties[J]. Acta Metallurgica Sinica, 2012, 48(9): 1089-1096. | |
13 | 郑至轩. 添加金属铜对SUS304不锈钢显微组织及抗菌性质影响[D]. 台湾: 台北科技大学工程学院, 2011. |
Zheng Zhi-xuan. Microstructure and antibacterial properties of Cu-modified SUS 304 stainless steel[D]. Taiwan: School of Engineering, National Taipei University of Technology, 2011. | |
14 | Sreekumari K R, Kanavillil N, Takao K, et al. Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion[J]. ISIJ International2003, 43(11): 1799-1806. |
15 | Chiang W C, Tseng I S, Moller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance[J]. Materials Chemistry & Physics, 2010, 119(1/2): 123-130. |
16 | Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications. Part I: microstructure characteristics, mechanical properties and antibacterial mechanisms[J]. Biofouling, 2011, 27(5): 449-457. |
17 | 轩阳. 含银304奥氏体不锈钢中富银相析出行为研究[D]. 北京: 清华大学材料学院, 2014. |
Xuan Yang. Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel [D]. Beijing: School of Materials Science and Engineering, Tsinghua University, 2014. | |
18 | 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216. |
Xiang Hong-liang, Guo Pei-pei, Liu Dong. Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(10): 1210-1216. | |
19 | 郭培培, 向红亮, 李敬鑫, 等. Cu-Ag合金雾化工艺研究[J]. 特种铸造及有色合金, 2013, 33(5): 470-473. |
Guo Pei-pei, Xiang Hong-liang, Li Jing-xin, et al. Atomization of Cu-Ag alloy[J]. Special Casting & Nonferrous Alloys, 2013, 33(5): 470-473. | |
20 | 朱峰成. 银含量对2205双相不锈钢显微组织及高温机械性质影响之研究[D]. 台湾: 国立高雄大学工学院, 2010. |
Zhu Feng-cheng. Effect of silver content on microstructure and high temperature mechanical properties of 2205 duplex stainless steel[D]. Taiwan: School of Engineering, National University of Kaohsiung, 2010. | |
21 | 杨才福, 张永权. 铜含量对低碳HSLA钢力学性能的影响[J]. 特殊钢, 1999, 20(1): 27-30. |
Yang Cai-fu, Zhang Yong-quan. Effect of Cu content on mechanical properties of low carbon HSLA steel[J]. Special Steel, 1999, 20(1): 27-30. | |
22 | 牛绍蕊. 不锈钢的电化学腐蚀性能研究[D]. 兰州: 兰州理工大学材料科学与工程学院, 2010. |
Niu Shao-rui. The research of eleetrochemical corrosion resistance of stainless steel[D]. Lanzhou: School of Materials Science and Engineering, Lanzhou University of Technology, 2010. | |
23 | Sourisseau T, Chauveau E, Baroux B. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media[J]. Corrosion Science, 2005, 47(5): 1097-1117. |
[1] | 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525. |
[2] | 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667. |
[3] | 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90. |
[4] | 庄蔚敏,施宏达,解东旋,杨冠男. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106. |
[5] | 关庆丰,姚欣雯,杨洋,张凌燕,刘迪,李晨,吕鹏. 强流脉冲电子束作用下TC4钛合金表面Cr合金层制备及性能[J]. 吉林大学学报(工学版), 2019, 49(6): 2002-2009. |
[6] | 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001. |
[7] | 依卓,付文智,李明哲. 双层剖分式超高压模具数值模拟及实验[J]. 吉林大学学报(工学版), 2019, 49(5): 1593-1599. |
[8] | 谷晓燕,刘东锋,刘婧,孙大千,马会峰. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600-1607. |
[9] | 李欣,孙延朋,王丹,陈军绪,谷诤巍,徐虹. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1608-1614. |
[10] | 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621. |
[11] | 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520. |
[12] | 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265. |
[13] | 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271. |
[14] | 张学广,贾明萌,刘纯国,何广忠. 基于增量控制的型材拉弯轨迹设计及有限元仿真[J]. 吉林大学学报(工学版), 2019, 49(4): 1272-1279. |
[15] | 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810. |
|