吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1381-1389.doi: 10.13229/j.cnki.jdxbgxb.20210850

• 交通运输工程·土木工程 • 上一篇    

RET/胶粉复合改性沥青制备及其混合料性能评价

郑睢宁(),何锐(),路天宇,徐紫祎,陈华鑫   

  1. 长安大学 材料科学与工程学院,西安 710064
  • 收稿日期:2021-08-31 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 何锐 E-mail:zhengsuining@163.com;heruia@163.com
  • 作者简介:郑睢宁(1993-),男,博士研究生.研究方向:道路建筑材料.E-mail:zhengsuining@163.com
  • 基金资助:
    中国博士后科学基金项目(2019M663602);陕西省创新人才推进计划项目(2020KJXX-043);长安大学博士研究生创新能力培养项目(300203211312)

Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture

Sui-ning ZHENG(),Rui HE(),Tian-yu LU,Zi-yi XU,Hua-xin CHEN   

  1. School of Materials Science and Engineering,Chang'an University,Xi'an 710064,China
  • Received:2021-08-31 Online:2023-05-01 Published:2023-05-25
  • Contact: Rui HE E-mail:zhengsuining@163.com;heruia@163.com

摘要:

为确定反应性弹性体三元共聚物(RET)/胶粉复合改性沥青最佳组成配比,借助Design-Expert分析了RET、胶粉和油分掺量与沥青性能之间的定量关系,采用动态剪切流变仪、红外光谱仪和荧光显微镜探究了复合改性机理,并对复合改性沥青路用性能和疲劳性能进行了验证评价。结果表明:RET和胶粉掺量与改性沥青性能存在非线性函数关系,RET、胶粉和油分最佳掺量分别为沥青质量的1.69%、16.52%和1.83%;RET/胶粉复合体系可与沥青发生化学反应生成新的吸收峰,使改性剂与沥青之间的边界减弱,改善胶粉与沥青的相容性,提升RET沥青的低温性能,从而提高沥青混合料的路用性能。

关键词: 道路工程, 改性沥青, 反应性弹性体三元共聚物, 胶粉, 组分优化, 改性机理

Abstract:

To determine the optimal ratio of reactive elastomer terpolymer(RET) and rubber modified asphalt, the quantitative relationship between asphalt performance and the content of RET, rubber and oil was comprehensively investigated based on Design-Expert. The modification mechanism of composite modified asphalt was investigated by Dynamic Shear Rheometer, Infrared Spectrometer and fluorescence microscope and the road performance and fatigue performance of composite modified asphalt were verified and evaluated. The results show that the relationship between asphalt performance and the content of RET and rubber is not linearly, the optimum content of RET, rubber powder and oil is respectively 1.69%, 16.52% and 1.83% of the asphalt. The RET/rubber powder composite system can react with asphalt to generate new absorption peaks, which weakens the boundary between the modifier and asphalt. Thus, the compatibility of rubber powder and asphalt and the low temperature performance of RET modified asphalt were improved, which can significantly improve the road performance of asphalt mixture.

Key words: road engineering, modified asphalt, reactive elastomeric terpolymer, rubber powder, component optimization, modified mechanism

中图分类号: 

  • U414

表1

基质沥青技术性能指标"

试验项目试验结果规定值
针入度/(25 ℃,0.1 mm)6660~80
软化点/℃50≥46
延度/(15 ℃,cm)>100≥100

表2

改性沥青试验方案"

序号沥青/%RET/%胶粉/%油分/%
F11001.0101.5
F21001.0152.5
F31001.0203.5
F41001.5103.5
F51001.5151.5
F61001.5202.5
F71002.0102.5
F81002.0153.5
F91002.0201.5
JZ100---
JF100-203.5
RE1002--

表3

改性沥青基本性能试验结果"

序号针入度/(25 ℃,0.1 mm)软化点/℃延度/(5 ℃,cm)135 ℃粘度/(Pa·s)存储稳定性/℃
F15764.512.32.3511.7
F25166.015.42.7741.9
F34769.516.22.9272.2
F45573.011.22.4701.0
F55075.515.42.6071.9
F64774.517.63.0152.3
F75276.510.62.6720.8
F84778.015.72.7941.3
F94381.516.03.1542.4
JZ6650.08.30.528-
JF4558.517.72.8477.3
RE6165.07.82.1870.5

表4

试验方案优化及性能验证"

试验沥青/%RET/%胶粉/%油分/%针入度/(25 ℃,0.1 mm)软化点/℃延度/(5 ℃,cm)135 ℃粘度/(Pa·s)存储稳定性/℃
预测值1001.6916.521.834875.017.32.8091.78
试验值1001.6916.521.834975.517.22.7821.6

图1

车辙因子随温度的变化曲线"

图2

相位角随温度的变化曲线"

图3

荧光显微测试结果"

图4

红外光谱试验结果"

表5

AC-13沥青混合料级配组成"

级配组成通过率/%
16 mm13.2 mm9.5 mm4.75 mm2.36 mm1.18 mm0.6 mm0.3 mm0.15 mm0.075 mm
级配上限100100856950392820168
级配下限100906939241310844
级配中值10095.278.454.638.827.219.614.410.06.5

图5

路用性能测试结果"

图6

沥青混合料疲劳试验结果"

1 Gama D A, Yan Y, Rodrigues J K G, et al. Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance[J]. Construction and Building Materials, 2018, 169: 522-529.
2 Geckil T, Seloglu M. Performance properties of asphalt modified with reactive terpolymer[J]. Construction and Building Materials, 2018, 173: 262-271.
3 Singh D, Ashish P K, Changder R S, et al. Effect of warm-mix additives and lime on intermediate-temperature fracture property of RET-and PPA-modified asphalt binder[J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019112.
4 郝培文,常睿,刘红瑛,等. 反应性弹性体三元共聚物改性沥青及其混合料性能与机制[J]. 复合材料学报, 2018, 35(7): 1952-1962.
Hao Pei-wen, Chang Rui, Liu Hong-ying, et al. Mechanism and performance of reactive elastomeric terpolymer modified asphalt and asphalt mixture[J]. Acta Materiae Composite Sinica, 2018, 35(7): 1952-1962.
5 Keyf S, Ismail O, Corbacioglu B D. Polymer-modified bitumen using ethylene terpolymers[J].Petroleum Science and Technology, 2007, 25(7): 915-923.
6 王大伟. RET改性沥青及其混合料的技术特性试验研究[D]. 重庆:重庆交通大学土木工程学院, 2013.
Wang Da-wei. Experimental research on technical characteristics of RET modified asphalt and asphalt mixture[D]. Chongqing: School of Civil Engineering, Chongqing Jiaotong University, 2013.
7 Xu C, Zhang Z, Liu F. Improving the low-temperature performance of RET modified asphalt mixture with different modifiers[J]. Coatings, 2020, 10(11): 10111070.
8 雷宁静. 废胶粉复合改性高黏沥青制备及其关键指标研究[D]. 西安:长安大学材料科学与工程学院, 2020.
Lei Ning-jing. Reserch on preparation and key evaluation index of high viscosity asphalt modified by crumb rubber[D]. Xi'an: School of Material Science and Engineering, Chang'an University, 2020.
9 刘耀辉,陈乔旭,宋雨来,等. 火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理[J].吉林大学学报:工学版, 2017, 47(6): 1861-1867.
Liu Yao-hui, Chen Qiao-xu, Song Yu-lai,et al.Compressive behavior and mechanism of volcanic ash-SBS, rubber powder-SBS and SBS modified asphalt[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1861-1867.
10 Ren S, Liu X, Xu J, et al. Investigating the role of swelling-degradation degree of crumb rubber on CR/SBS modified porous asphalt binder and mixture[J]. Construction and Building Materials, 2021, 300: 124048.
11 Zheng W, Wang H, Chen Y,et al.A review on compatibility between crumb rubber and asphalt binder[J]. Construction and Building Materials, 2021, 297: 123820.
12 曹支才,张宏亮.双螺杆挤出胶粉与RET复合改性沥青及其混合料性能研究[J].公路工程,2020,45(2): 156-162.
Cao Zhi-cai, Zhang Hong-liang. Study on properties of twin-screw extrusion crumb rubber powder and RET composite modified asphalt and asphalt mixture[J]. Highway Engineering, 2020, 45(2): 156-162.
13 Ahmedzade P. The investigation and comparison effects of SBS and SBS with new reactive terpolymer on the rheological properties of bitumen[J]. Construction and Building Materials, 2013, 38: 285-291.
14 常睿,郝培文. RET复配胶粉改性沥青流变特性与改性机理研究[J].材料导报, 2016, 30(24): 130-136.
Chang Rui, Hao Pei-wen. Rheological properties and modified mechanism of RET compound rubber modified asphalt[J]. Materials Review, 2016, 30(24): 130-136.
15 田迎春, 韩森. RET复配胶粉改性沥青混合料路用性能与耐久性研究[J]. 公路工程, 2019, 44(1): 171-178.
Tian Ying-chun, Han Sen. Study on road performance and durability of RET compounded rubber power modified asphalt and asphalt mixture[J]. Highway Engineering, 2019, 44(1): 171-178.
16 Khairuddin F H, Alamawi M Y, Yusoff N I M, et al. Physicochemical and thermal analyses of polyurethane modified bitumen incorporated with cecabase and rediset: optimization using response surface methodology[J]. Fuel, 2019, 254: 115662.
17 He R, Zheng S, Chen H, et al. Investigation of the physical and rheological properties of trinidad lake asphalt modified bitumen[J]. Construction and Building Materials, 2019, 203: 734-739.
18 He R, Liang Y, Gao L, et al. Preparation and performance assessment of asphalt emulsion modified by the fabricated SBS latex[J]. Advances in Civil Engineering, 2020, 2020: 1-11.
19 Zhang F, Hu C. The research for SBS and SBR compound modified asphalts with polyphosphoric acid and sulfur[J]. Construction and Building Materials, 2013, 43: 461-468.
20 He R, Wu S, Wang X, et al. Temperature sensitivity characteristics of SBS/CRP-modified bitumen after different aging processes[J]. Materials, 2018, 11(11): 11112136.
21 Fang C, Guo N, You Z, et al. Investigating fatigue life prediction of rubber asphalt mixture based on damage evolution using residual strain analysis approach[J]. Construction and Building Materials, 2020, 257: 119476.
[1] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[2] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[3] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[4] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[5] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[6] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
[7] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[8] 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549.
[9] 叶奋,胡诗园. 考虑旧水泥路面接缝传荷能力的超薄罩面力学特性[J]. 吉林大学学报(工学版), 2022, 52(11): 2636-2643.
[10] 于晓贺,罗蓉,柳子尧,黄婷婷,束裕. 沥青路面典型裂缝湿度场数值模拟[J]. 吉林大学学报(工学版), 2022, 52(10): 2343-2351.
[11] 杨彦海,崔宏,杨野,张怀志,刘赫. 冻融循环作用对非饱和乳化沥青冷再生混合料性能的影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2352-2359.
[12] 冉武平,陈慧敏,李玲,冯立群. 干湿循环下粗粒土回弹模量演变规律及模型预估和修正[J]. 吉林大学学报(工学版), 2021, 51(6): 2079-2086.
[13] 董伟智,张爽,朱福. 基于可拓层次分析法的沥青混合料路用性能评价[J]. 吉林大学学报(工学版), 2021, 51(6): 2137-2143.
[14] 许哲谱,杨群. 基于实时路况地图的短期养护作业开始时间优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1763-1774.
[15] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!