吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1790-1798.doi: 10.13229/j.cnki.jdxbgxb.20221550

• 交通运输工程·土木工程 • 上一篇    

循环荷载下冻融路基黏土长期塑性行为

张哲1,2(),付伟3,张军辉1,2(),黄超4   

  1. 1.长沙理工大学 交通运输工程学院,长沙 410114
    2.长沙理工大学 公路养护技术国家工程研究中心,长沙 410114
    3.中交第二公路勘察设计研究院有限公司,武汉 430052
    4.中南大学 土木工程学院,长沙 410075
  • 收稿日期:2022-12-04 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 张军辉 E-mail:zzhe@stu.csust.edu.cn;zjhseu@csust.edu.cn
  • 作者简介:张哲(1997-),男,硕士研究生.研究方向:特殊路基设计与处治.E-mail:zzhe@stu.csust.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600900);中交建集团青年科技创新项目(2021-ZJKJ-QNCX16);长沙理工大学研究生科研创新项目(CX2021SS123)

Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads

Zhe ZHANG1,2(),Wei FU3,Jun-hui ZHANG1,2(),Chao HUANG4   

  1. 1.School of Traffic & Transportation Engineering,Changsha University of Science & Technology,Changsha 410114,China
    2.National Engineering Research Center of Highway Maintenance Technology,Changsha University of Science & Technology,Changsha 410114,China
    3.CCCC Second Highway Consultants Co. ,Ltd. ,Wuhan 430052,China
    4.School of Civil Engineering,Central South University,Changsha 410075,China
  • Received:2022-12-04 Online:2023-06-01 Published:2023-07-23
  • Contact: Jun-hui ZHANG E-mail:zzhe@stu.csust.edu.cn;zjhseu@csust.edu.cn

摘要:

采用室内试验的方法,考察了冻融循环次数和应力水平对路基土静剪切强度和塑性变形的影响规律。结果表明:围压降低和冻融循环的累积导致路基土静剪切强度发生衰减,且当动应力水平升高时,路基土的永久变形逐渐由塑性安定向塑性蠕变或增量失稳状态发展。综合分析测试结果,明确了避免冻融路基土永久变形出现失稳状态的临界应力水平和各类型判别准则,提出了考虑围压和冻融循环次数的临界动应力描述公式,并以动应力产生的剪应力与抗剪强度的比值表征剪切作用,建立并验证了适用于冻融路基黏土永久变形的力学-经验模型。本文研究成果可为季冻区路基的稳定及耐久运营予以理论支持。

关键词: 道路工程, 临界动应力, 永久变形, 动三轴试验, 路基土, 冻融循环

Abstract:

The effects of the number of freeze-thaw cycles was used the method of indoor test and the stress level on the static shear strength and plastic deformation soil were investigated. The results show that the static shear strength decreases with the decrease of confining pressure and the accumulation of freeze-thaw cycles, and the permanent deformation gradually develops from plastic stability to plastic creep or incremental instability when the dynamic stress level increases. Based on the comprehensive analysis of the test results, the critical stress level to avoid the instability of permanent deformation and the discrimination criteria of each type are defined, a description formula of critical dynamic stress considering confining pressure and freeze-thaw cycles is proposed, and the ratio of shear stress generated by dynamic stress to shear strength is used to represent shear action, and a mechanical-empirical model suitable for permanent deformation of subgrade clay subjected to freeze-thaw cycles was established and verified. The results of the study can provide theoretical support for the stability and durable operation of the subgrade in the monsoon freeze zone.

Key words: road engineering, critical dynamic stress, permanent deformation, dynamic triaxial tests, subgrade soils, freeze-thaw cycles

中图分类号: 

  • TU411

表1

静三轴试验破坏强度 (kPa)"

冻融循环次数围压/kPa
306090
0502.3642.2742.5
1474.6606.8701.6
3447.5572.2661.6
6427.9547.1632.6
10413.9529.2611.9

图1

永久变形试验结果"

图2

不同围压下临界动应力试验结果"

图3

不同冻融循环次数下临界动应力试验结果"

图4

临界动应力拟合结果"

图5

永久变形三状态判别准则"

表2

判别准则对比结果"

来源组类Shakedown理论判别结果Werkmeister准则判别结果本文判别准则判别结果
文献[81ACA
2BCB
3BCB
4BCB
5BCB
6CCC
7ACA
8ACA
9BCB
10BCB
11BCB
12BCB
文献[291ACA
2ACA
3BCB
4BCB
5ABA
6ACA
7ACB
8BCB
9ACA
10ACA
11ACA
12ACA

图6

不同偏应力下永久变形终值"

图7

不同围压下永久变形终值"

图8

不同冻融循环次数下永久变形终值"

图9

剪应力比示意图"

图10

永久变形预估模型合理性验证"

1 Zhang Jun-hui, Zhang An-shun, Li Jue, et al. Gray correlation analysis and prediction on permanent deformation of subgrade filled with construction and demolition materials[J].Materials, 2019, 12(18): No.3035.
2 Yang Jia-qiang, Cui Zhen-dong. Influences of train speed on permanent deformation of saturated soft soil under partial drainage conditions[J]. Soil Dynamics and Earthquake Engineering,2020, 133: No.106120.
3 谷川, 王军, 蔡袁强, 等. 考虑变围压因素的饱和软黏土循环纯压动力特性试验研究[J]. 岩土工程学报, 2013, 35(7): 1307-1315.
Gu Chuan, Wang Jun, Cai Yuan-qiang, et al. Undrained dynamic behaviors of saturated clays under compressive stress paths considering cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1307-1315.
4 Lu Zheng, She Jian-bo, Wu Xiao-wen, et al. Cumulative strain characteristics of compacted soil under effect of freeze-thaw cycles with water supply[J]. Transportation Geotechnics, 2019, 21: No.100291.
5 Monismith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subgrade soils due to repeated loading[J]. Transportation Research Record, 1975(537): 1-17.
6 Chai J C, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11): 907-916.
7 龙尧, 张家生, 丁建源, 等. 粗粒土路基循环荷载试验及累积变形模型研究[J]. 振动与冲击, 2017, 36(16): 128-133, 158.
Long Yao, Zhang Jia-sheng, Ding Jian-yuan, et al. The cyclic load experiments and an accumulated deformation model for coarse-grained soil filling[J]. Journal of Vibration and Shock, 2017, 36(16): 128-133, 158.
8 Lin Bo, Zhang Feng, Feng De-cheng, et al. Accumulative plastic strain of thawed saturated clay under long-term cyclic loading[J]. Engineering Geology, 2017, 231: 230-237.
9 Werkmeister S, Dawson A, Wellner F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering,2004,130:665-674.
10 Gu Fan, Zhang Yu-qing, Luo Xue, et al. Characterization and prediction of permanent deformation properties of unbound granular materials for pavement ME design[J]. Construction and Building Materials, 2017, 155: 584-592.
11 Chen Wen-bo, Feng Wei-qiang, Yin Jian-hua, et al. Characterization of permanent axial strain of granular materials subjected to cyclic loading based onshakedown theory[J]. Construction and Building Materials, 2019, 198: 751-761.
12 聂如松, 李亚峰, 冷伍明, 等. 列车间歇荷载作用下路基细粒土填料的塑性变形行为及临界动应力研究[J]. 岩石力学与工程学报, 2021, 40(4): 828-841.
Nie Ru-song, Li Ya-feng, Leng Wu-ming, et al. Plastic deformation and critical dynamic stress of fine-grained soils under intermittent loading of trains[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 828-841.
13 廖化荣, 汤连生, 刘增贤, 等. 循环荷载下路基红黏土临界应力水平分析[J].岩土力学, 2009, 30(3): 587-594.
Liao Hua-rong, Tang Lian-sheng, Liu Zeng-xian, et al. Analysis of critical stress level of subgrade red clay under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(3): 587-594.
14 王康宇, 庄妍, 耿雪玉. 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873.
Wang Kang-yu, Zhuang Yan, Geng Xue-yu. Experimental study on critical dynamic stress of coarse-grained soil in railway subgrade[J]. Rock and Soil Mechanics, 2020, 41(6): 1865-1873.
15 Zhang An-shun, Zhang Jun-hui, Peng Jun-hui, et al. Effect of Freeze-Thaw Cycles on Mechanical Properties of an Embankment Clay: laboratory Tests and Model Evaluations[J]. Frontiers in Earth Science, 2022, 10: 865348.
16 Liu Jian-kun, Chang Dan, Yu Qian-mi. Influence of freeze-thaw cycles on mechanical properties of a silty sand[J]. Engineering Geology, 2016, 210: 23-32.
17 Zhang Jun-hui, Zhang An-shun, Huang Chao, et al. Characterising the resilient behaviour of pavement subgrade with construction and demolition waste under freeze-thaw cycles[J]. Journal of Cleaner Production, 2021, 300: No.126702.
18 张军辉, 尹志勇, 郑健龙. 南方湿热地区路基红黏土Shakedown临界应力水平试验研究[J]. 中南大学学报: 自然科学版, 2014, 45(4): 1288-1292.
Zhang Jun-hui, Yin Zhi-yong, Zheng Jian-long. Research on critical stress level of Shakedown of red clay in southern hot and humid areas[J]. Journal of Central South University (Science and Technology), 2014, 45(4): 1288-1292.
19 黄超. 冻融作用下路基低液限黏土永久变形特性研究[D].长沙:长沙理工大学交通运输工程学院,2022.
Huang Chao. Study on permanent deformation of subgrade low liquid limit clay under freeze-thaw cycles[D]. Changsha: School of Traffic & Transportation Engineering, Changsha University of Science & Technology, 2022.
20 张雪松. 基于冻融循环条件下路基填料性能的分析研究[D].天津:河北工业大学土木与交通学院,2016.
Zhang Xue-song. Analysis and research on the performance of subgrade filling material under the condition of freezing and thawing cycles[D]. Tianjin: School of Civil and Transportation Engineering, Hebei University of Technology, 2016.
21 Wang Jia-hui, Ling Xian-zhang, Li Qiong-lin, et al. Accumulated permanent strain and critical dynamic stress of frozen silty clay under cyclic loading[J]. Cold Regions Science and Technology, 2018, 153: 130-143.
22 Wolff H, Visser A T. Incorporating elasto-plasticity in granular layer pavement design[C]∥Proceedings of the Institution of Civil Engineers Transport, London, England, 1994: 259-272.
23 Xu Xiang-tian, Zhang Wei-dong, Fan Cai-xia, et al. Effect of freeze-thaw cycles on the accumulative deformation of frozen clay under cyclic loading conditions: experimental evidence and theoretical model[J]. Road Materials and Pavement Design, 2019, 7: 75-84.
24 Li Qiong-lin, Ling Xian-zhang, Sheng Dai-chao. Elasto-plastic behaviour of frozen soil subjected to long-term low-level repeated loading, part II: constitutive modelling[J]. Cold Regions Science and Technology, 2016, 122: 58-70.
25 Tang Yi-qun, Li Jin-zhang. Experimental study on dynamic cumulative axial-strain performance of freezing—thawing saturated sandy silt[J]. Cold Regions Science and Technology, 2018, 155: 100-107.
26 Tian Shuang, Tang Liang, Ling Xian-zhang, et al. Cyclic behaviour of coarse-grained materials exposed to freeze-thaw cycles: experimental evidence and evolution model[J]. Cold Regions Science and Technology, 2019: 167: No.102815.
27 Ghorbani B, Arulrajah A, Narsilio G, et al. Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze–thaw cycles using ANN and SVR[J]. Construction and Building Materials, 2020, 258: No.119688.
28 Domitrovic J, Rukavina T, Lenart S. Effect of freeze-thaw cycles on the resilient moduli and permanent deformation of RAP/natural aggregate unbound base mixtures[J]. Transportation Geotechnics, 2019, 18: 83-91.
29 Zhou Zhi-wei, Ma Wei, Li Guo-yu, et al. A novel evaluation method for accumulative plastic deformation of granular materials subjected to cyclic loading: Taking frozen subgrade soil as an example[J]. Cold Regions Science and Technology, 2020, 12(4): 1547-1556.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[6] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[7] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[8] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[9] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[10] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[11] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[12] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[13] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[14] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[15] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!