吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1677-1687.doi: 10.13229/j.cnki.jdxbgxb.20221138

• 交通运输工程·土木工程 • 上一篇    

含起波钢筋预制梁柱节点抗震性能试验

秦拥军(),陈奇,张驰,王建虎   

  1. 新疆大学 建筑工程学院,乌鲁木齐 830047
  • 收稿日期:2022-09-02 出版日期:2024-06-01 发布日期:2024-07-23
  • 作者简介:秦拥军(1970-),男,教授,硕士.研究方向:高性能混凝土及框架结构.E-mail:qyjjg@xju.edu.cn
  • 基金资助:
    新疆维吾尔自治区区域协同创新专项项目(2019E0231)

Experiment on seismic performance of prefabricated beam-column joints with kinded rebar

Yong-jun QIN(),Qi CHEN,Chi ZHANG,Jian-hu WANG   

  1. School of Civil Engineering and Architecture,Xinjiang University,Urumqi 830047,China
  • Received:2022-09-02 Online:2024-06-01 Published:2024-07-23

摘要:

为转移装配式框架梁柱节点塑性铰,避免节点核心区发生由剪切破坏导致的“强梁弱柱”破坏模式,设计了含起波钢筋的新型预制试件及对比件;进行了拟静力加载试验,对比分析了滞回特性、刚度、承载能力、耗能和变形能力的差异,探究了在低周往复荷载作用下的抗震性能。结果表明:新型节点整体变形主要由起波钢筋段变形造成,核心区未发生破坏,成功实现了塑性铰的转移,并且相比对比试件具有更强的耗能和变形能力。

关键词: 装配式梁柱节点, 起波钢筋, 塑性铰, 试件变形, 抗震性能

Abstract:

In order to transfer the plastic hinge of prefabricated frame beam-column joints and avoid the "strong beam and weak column" failure mode caused by shear failure in the core area of the joints, a new type of prefabricated specimens and contrast pieces with kinded rebar were designed; The quasi-static loading test is carried out to compare and analyze the differences in hysteretic characteristics, stiffness, bearing capacity, energy dissipation and deformation capacity, and explore the seismic performance under low cycle reciprocating load. The results show that the overall deformation of the new joint is mainly caused by the deformation of the kinded rebar segment, and the core area is not damaged. The transfer of the plastic hinge is successfully realized, and the new joint has better energy dissipation and deformation capacity than the comparison specimen.

Key words: prefabricated beam-column joint, kinded rebar, plastic hinge, member deformation, seismic performance

中图分类号: 

  • TU375.4

表1

节点试件设计参数"

试件编号梁截面尺寸/mm×mm柱截面尺寸/mm×mm轴压比节点类型
RC0150×280250×2500.2-
RC30150×280250×2500.2起波钢筋
PC0150×280250×2500.2全灌浆套筒
PC30150×280250×2500.2起波钢筋+全灌浆套筒

图1

节点尺寸及配筋构造(单位mm)"

图2

起波钢筋构造图"

表2

钢筋力学性能"

钢筋牌号

直径

d/mm

屈服强度

fy /MPa

极限强度

fu/MPa

延伸率/%
HPB3008357561.413.31
HRB40016453.8621.839.7
起波钢筋16440.8616.968.9

图3

起波钢筋单轴拉伸过程及结果"

表3

混凝土力学性能"

混凝土等级fcuk/MPafc/MPa?tk/MPa?t/MPa
C4052.635.23.72.6
C5064.3434.23.0

图4

加载装置示意图"

图5

加载制度"

图6

试件破坏形态"

图7

各试件滞回曲线"

图8

各试件骨架曲线"

表4

试件承载力与位移延性系数"

试件方向Py/kNΔy/mmPm /kNΔm/mmΔu/mmRuRyμ
RC0正向29.5613.1434.5030.0445.091/451.173.43
负向29.9922.6832.3070.0070.001/291.083.09
PC0正向30.6013.2437.7021.2542.141/481.173.18
负向37.0718.4542.7070.0070.001/291.153.79
RC30正向19.7811.4423.4032.5647.171/431.184.12
负向24.9718.8333.8070.0070.001/291.353.72
PC30正向39.1214.4646.7023.4351.581/201.193.57
负向37.2320.1642.1070.0070.001/291.133.47

图9

各试件耗能能力"

表5

各试件累积耗能相对值"

试件编号E/(kN·m-1η
RC044.71.00
PC063.91.43
RC3080.81.81
PC3092.12.06

图10

各试件的刚度退化"

图11

试件变形组成侧移占比"

1 Dooley K L, Bracci J M. Seismic evaluation of column-to-beam strength ratios in reinforced concrete frames[J]. ACI Structural Journal,2001, 98(6):843-851.
2 Park R, Milburn J R. Comparison of recent New Zealand and United States seismic design provisions for reinforced concrete beam-column joints and test results for four units designed according to the New Zealand code[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,1983, 16(1):21-42.
3 黄良璧, 王崇昌, 陈平, 等. 关于钢筋混凝土框架梁端塑性铰转移问题的研究[J]. 西安冶金建筑学院学报,1990, 22(2): 97-105.
Huang Liang-bi, Wang Chong-chang, Chen Ping, et al. Study on the transfer of plastic hinges at the ends of reinforced concrete frame beams[J]. Journal of Xi'an University of Architecture & Technology, 1990, 22(2): 97-105.
4 Youssef M A, Alam M S, Nehdi M. Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys[J]. Journal of Earthquake Engineering,2008, 12(7): 1205-1222.
5 Yu J, Tan K H. Special detailing techniques to improve structural resistance against progressive collapse[J]. Journal of Structural Engineering,2014, 140(3): No.04013077.
6 Kam W E, Stefano P. Selective weakening and post-tensioning for the seismic retrofit of non-ductile RC frames[D]. Christchurch:University of Canterbury, 2018.
7 Kam W E, Pampanin S. Selective weakening and post-tensioning for retrofit of non-ductile R.C. exterior beam-column joints[J/OL]. [2022-07-26]. .
8 蒋永生, 卫龙武, 陆建忠, 等. 钢筋混凝土框架节点梁端人工塑性铰新方案的探索[J]. 东南大学学报,1991, 21(1):42-49.
Jiang Yong-sheng, Wei Long-wu, Lu Jian-zhong, et al. Exploration of new schemes of artificial plastic hinges at the end of reinforced concrete frame joints[J]. Journal of Southeast University, 1991, 21(1):42-49.
9 王兴国, 单明岳, 葛楠, 等. 楼板开角缝实现RC框架“强柱弱梁”效果的有限元分析[J]. 地震工程与工程振动,2012, 32(1):121-127.
Wang Xing-guo, Shan Ming-yue, Ge Nan, et al. Finite element analysis of efficiency of slot-cutting around RC frame joint for "strong column and weak beam"[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(1): 121-127.
10 Oudah F, El-Hacha R. Plastic hinge relocation in concrete structures using the double-slotted-beam system[J]. Bulletin of Earthquake Engineering, 2017, 15(5): 2173-2199.
11 Byrne J, Bull D. Design and testing of reinforced concrete frames incorporating the slotted beam detail[J]. Bulletin of the New Zealand National Society for Earthquake Engineering,2012, 45(2): 77-83.
12 Ohkubo M. Shear transfer mechanism of reinforced concrete beams with a slot at the beam-end[J]. Proceedings of the Japan Concrete Institute,1999, 21(3): 523-528.
13 刘思嘉, 陈力, 曹铭津, 等. 起波钢筋高速动态拉伸力学性能研究[J]. 爆炸与冲击, 2022,42(5):26-37.
Liu Si-jia, Chen Li, Cao Ming-jin, et al. Study on mechanical properties of the kinked rebar under high speed dynamic tension[J]. Explosion and Shock Waves, 2022, 42(5): 26-37.
14 樊源, 陈力, 任辉启, 等. 起波配筋RC梁抗爆 作用机理及抗力动力系数的理论计算方法[J]. 爆炸与冲击, 2019, 39(3): 123-134.
Fan Yuan, Chen Li, Ren Hui-qi, et al. Theoretical calculation method of explosion resistance mechanism and resistance dynamic coefficient of RC beam with kinded rebar[J]. Explosion and Shock Waves, 2019, 39(3): 123-134.
15 Galunic B, Bertero V V, Popov E P. An approach for improving seismic behavior of reinforced concrete interior joints[D].California: University of California, 1977.
16 杨健翔. 起波钢筋RC梁柱子结构抗连续倒塌性能研究[D]. 南京: 东南大学土木工程学院, 2019:95-103.
Yang Jian-xiang. Study on progressive collapse behavior of RC beam-column substructure with a kinked rebar configuration[D]. Nanjing: School of Civil Engineering, Southeast University, 2019: 95-103.
17 Feng P, Qiang H, Qin W, et al. A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures[J]. Engineering Structures, 2017, 147: 752-767.
18 Qiang H, Yang J, Feng P, et al. Kinked rebar configurations for improving the progressive collapse behaviours of RC frames under middle column removal scenarios[J]. Engineering Structures, 2020, 211 :No.110425.
19 Qiang H, Feng P, Stojadinovic B, et al. Cyclic loading behaviors of novel RC beams with kinked rebar configuration[J]. Engineering Structures, 2019, 200: No.109689.
20 陈力, 任辉启, 樊源, 等. 强动载作用下起波配筋梁抗力性能的试验研究[J]. 土木工程学报, 2021, 54(10): 1-8.
Chen Li, Ren Hui-qi, Fan Yuan, et al. Experimental study on the resistance of RC beam with kinked rebar under severe dynamic loading[J]. China Civil Engineering Journal, 2021, 54(10): 1-8.
21 . 装配式混凝土结构技术规程 [S].
22 . 金属材料拉伸试验第1部分: 室温试验方法 [S].
23 . 普通混凝土力学性能试验方法标准 [S].
24 . 建筑抗震试验规程 [S].
25 . 建筑抗震设计规范 [S].
26 . 钢筋混凝土装配整体式框架节点与连接设计规程 [S].
[1] 刁延松,任义建,杨元强,赵凌云,刘秀丽,刘芸. 带有摩擦耗能组件的可更换钢梁柱拼接节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1643-1656.
[2] 何华飞,李兆平,符瑞安,马绍麟,黄明利. 考虑地层约束效应的预制侧墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1601-1611.
[3] 郭玉荣,潘建中. 基于改进Bouc-Wen模型的RC柱数值模拟方法[J]. 吉林大学学报(工学版), 2024, 54(4): 1028-1037.
[4] 雷鸣,尹思阳,王德玲,张继承,路世伟. 基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能模拟[J]. 吉林大学学报(工学版), 2023, 53(9): 2573-2580.
[5] 邸振勇,杨新辉,林霄. 基于荷载⁃位移滞回曲线的建筑双梁⁃柱节点抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(7): 2061-2066.
[6] 王林峰,夏万春,徐浪,黄晓明,谭国金,张继旭. 板簧式减震锚头结构及抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1842-1852.
[7] 闫清峰,张纪刚,王涛,陈德刚,郁有升,杨迎春. 预制预装修模块化建筑连接节点抗震性能[J]. 吉林大学学报(工学版), 2023, 53(2): 505-514.
[8] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[9] 刁延松,郭荡,屠康,焦圣伦,刘芸,刘秀丽. 新型异形钢管混凝土柱⁃钢梁节点抗震性能试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1724-1733.
[10] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[11] 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
[12] 高欣, 吴晓伟, 田俊. 轻骨料混凝土剪力墙非线性有限元模型的构成及影响其抗震性能的因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1428-1435.
[13] 于向军, 王国强, 王继新, 唐小波, 胡季. 轮式装载机滚翻保护结构动态响应[J]. 吉林大学学报(工学版), 2010, 40(05): 1262-1267.
[14] 李黎明,陈以一,李宁,蔡玉春. 外套管式冷弯方钢管与H型钢梁连接节点的抗震性能[J]. 吉林大学学报(工学版), 2010, 40(01): 67-0071.
[15] 孙绪杰,潘景龙,郑文忠 . 玻璃纤维增强聚合物混凝土小型空心
砌块复合墙片的抗震性能
[J]. 吉林大学学报(工学版), 2008, 38(05): 1054-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!