吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 1831-1843.doi: 10.13229/j.cnki.jdxbgxb.20221159

• 车辆工程·机械工程 • 上一篇    

基于Fluent的散热系统扩流结构内部流场分析及优化

刘昕晖(),相志霖,谭鹏,陈伟,冯吉宇   

  1. 吉林大学 机械与航空航天工程学院,长春 130022
  • 收稿日期:2022-12-08 出版日期:2024-07-01 发布日期:2024-08-05
  • 作者简介:刘昕晖(1962-),男,教授,博士. 研究方向:流体传动与控制. E-mail: liuxh@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFC0802904)

Analysis and optimization of internal flow field of diffuser structure of cooling system based on Fluent

Xin-hui LIU(),Zhi-lin XIANG,Peng TAN,Wei CHEN,Ji-yu FENG   

  1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2022-12-08 Online:2024-07-01 Published:2024-08-05

摘要:

针对风冷散热系统中气体扩流不充分的问题,提出在扩流结构内部安装导流片的解决方案。利用流体动力学软件Fluent搭建了扩流结构的仿真模型并对扩流结构进行了内部流场分析,得出的结论有:流体在扩流结构的不同平面内的局部水头损失分别为3.24 m和1.21 m;在简化模型中,流体低速、大面积分布的散热效率比流体高速、小面积分布的散热效率高8%。利用正交试验研究导流片参数对散热效率的影响,结果表明,针对系统的散热效率,影响程度从大到小的排序为:导流片组距入口端的最短距离L>导流片表面孔的半径R>导流片与流速方向的倾角θ>导流片在流速方向上的投影长度h>导流片在垂直于流速方向上的最短间距d。对优化后的扩流结构进行实体化改造,试验结果表明:当分别用3、4、5、6 V的输出电压驱动风机工作产生冷流体时,散热系统的散热效率分别提高了7.67%、3.62%、4.26%、6.93%。

关键词: 流体机械与工程, 导流片, 水头损失, 正交试验, Fluent

Abstract:

In order to solve the problem of insufficient gas diffusion in air-cooled heat dissipation system, this paper proposes a solution of installing diversion plates inside the expansion structure. The fluid dynamics software Fluent was used to build the simulation model of the expanded flow structure and analyze the internal flow field of the expanded flow structure. The conclusions are as follows: The local head loss of fluid in different planes of the diffuser structure is 3.24 m and 1.21 m respectively. In the simplified model, the heat dissipation efficiency of fluid with low speed and large area distribution is 8% higher than that of fluid with high speed and small area distribution. The orthogonal test is used to study the influence of the deflector parameters on the heat dissipation efficiency. The results show that for the heat dissipation efficiency of the system, the order of the degree of influence from large to small is: the shortest distance L between the deflector group and the inlet end, the radius R of the surface hole of the deflector, the inclination angle between the deflector and the flow direction θ, the projection length h of the deflector in the flow direction, and the shortest distance d of the deflector in the direction perpendicular to the flow direction. The experimental results show that the cooling efficiency of the heat dissipation system is increased by 7.67%, 3.62%, 4.26% and 6.93% when the fan is driven by output voltage of 3, 4, 5, 6 V respectively to produce cold fluid.

Key words: fluid machinery and engineering, deflector, headloss, orthogonal test, Fluent

中图分类号: 

  • TK89

图1

试验台示意图"

图2

扩流管示意图"

图3

速度分布图"

图4

扩流管出口端速度云图"

表1

入口端及出口端仿真数据"

平均压力/Pa平均速度/(m·s-1
入口端-10143.29
出口端39113.03

图5

不同平面由中心至边界的速度分布图"

表2

不同方案仿真数据"

试验气体出口温度/℃液体出口温度/℃

换热面

面积/m2

流体与壁面温差/℃
方案一23.12579.8821.58×10-43.296
方案二24.90679.8712.86×10-43.159

表3

正交试验所需因素和水平"

序号因素水平1水平2水平3
ALz/mm20、802080
Bd/mm1020/
Ch/mm1020/
DR/mm035
Eθ/(°)203045

表4

正交试验结果表"

试验组别因素

X方向平均速度

Vxˉ/(m?s-1)

Z方向平均速度

Vzˉ/(m?s-1)

ABCDE
1111114.6744.971
2122224.0415.260
3121334.4525.222
4112314.4665.390
5212324.4154.582
6221133.9814.458
7212124.6254.428
8221214.2634.309
9312325.1605.648
10322315.1484.893
11321214.5724.679
12312134.8704.657
13311235.0584.592
14221134.4053.505
15212113.8085.231
16311325.0714.576

图6

X-Y平面速度流线图"

图7

不同方案仿真流线图"

图8

导流片结构参数图"

图9

θ1取值范围图"

表5

正交试验极差分析表"

结果水平因素
ABCDE
X方向平均速度Vxˉ/(m?s-1)1KˉA1=4.408KˉB1=4.683KˉC1=4.560KˉD1=4.394KˉE1=4.489
2KˉA2=4.250KˉB2=4.409KˉC2=4.567KˉD2=4.483KˉE2=4.663
3KˉA3=5.002//KˉD3=4.786KˉE3=4.553
RiRA=0.752RB=0.274RC=0.007RD=0.392RE=0.11
Z方向平均速度Vzˉ/(m?s-1)1KˉA1=5.145KˉB1=4.897KˉC1=4.539KˉD1=4.542KˉE1=4.912
2KˉA2=4.419KˉB2=4.618KˉC2=5.010KˉD2=4.711KˉE2=4.839
3KˉA3=4.841//KˉD3=5.052KˉE3=4.487
RiRA=0.726RB=0.279RC=0.471RD=0.51RE=0.425

图10

各评价指标R值对比图"

表6

各评价指标最优水平表"

因素最优水平
X方向平均速度Z方向平均速度
A31
B11
C22
D33
E21

表7

各因素综合评分表"

综合评分ABCDE
Y14.8904.8124.5474.4834.743
Y24.3514.5344.8334.6194.812
Y34.893//4.9454.513
R0.5420.2780.2860.4620.299

图11

各因素综合评分值对比图"

图12

R值对比图"

图13

优化方案截面图"

图14

各平面速度云图对比"

图15

出口端速度云图"

表8

优化结构仿真数据表"

端口平均压力/Pa平均速度/(m?s-1
入口-91243.29
出口59711.93

图16

试验流程图"

图17

优化前后试验数据曲线对比图"

表9

不同风机输出电压下提升的散热效率"

输出电压/VQaiV/(J?s-1)QbiV/(J?s-1)aiV/%
3-5 709.56-6 147.417.67
4-7 741.19-8 021.413.62
5-9 037.22-9 422.534.26
6-9 352.48-10 000.496.93
1 Salleh M B, Kamaruddin N M, Mohamed-Kassim Z. The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine[J]. Energy Conversion and Management, 2020,226:No.113584.
2 胡兴军,张靖龙,罗雨霏. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报:工学版, 2021, 51(6):1933-1942.
Hu Xing-jun, Zhang Jing-long, Luo Yu-fei. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air⁃cooled charge air cooler[J]. Journal of Jilin University: (Engineering Edition), 2021, 51 (6):1933-1942.
3 张长天,刘景源. 导流片结构参数对四通道环形进气先进旋涡燃烧室性能影响[J]. 航空工程进展,2021,12(4): 138-146.
Zhang Chang-tian, Liu Jing-yuan. Effect of deflector structural parameters on the performance of four channel annular inlet advanced vortex combustor[J]. Progress of Aeronautical Engineering, 2021, 12 (4):138-146.
4 阴继翔,王涛,易文杰. 导流板倾角对“V”型直接空冷单元空气流动与换热特性的影响[J]. 热科学与技术, 2021, 20(5):424-430.
Yin Ji-xiang, Wang Tao, Yi Wen-jie. Effect of deflector inclination on air flow and heat transfer characteristics of "V" direct air cooling unit[J]. Thermal Science and Technology, 2021, 20 (5):424-430.
5 刘飞,赵一凡,牛卫箭. 发动机进气系统结构优化设计与仿真研究[J]. 机械设计,2020, 37(7):80-86.
Liu Fei, Zhao Yi-fan, Niu Wei-jian. Structural optimization design and Simulation of engine intake system[J]. Mechanical Design, 2020, 37(7):80-86.
6 Huang X, Lin C, Kong Y. Effects of geometric structures of air deflectors on thermo-flow performances of air-cooled condenser[J]. International Journal of Heat & Mass Transfer, 2018, 118:1022-1039.
7 Fatahian E, Ismail F, Ishak M, et al. An innovative deflector system for drag-type Savonius turbine using a rotating cylinder for performance improvement[J]. Energy Conversion and Management, 2022, 257:No.115453.
8 李永业,庞雅琦,宋晓腾. 导流条安放角度对管道车间断面螺旋流流速特性的影响[J]. 农业工程学报, 2021, 37(5):87-94.
Li Yong-ye, Pang Ya-qi, Xiao-teng Somg. Influence of setting angle for guide bar on velocity characteristics of spiral flow in cross-sections between piped carriages[J]. Journal of Agricultural Engineering, 2021, 37(5):87-94.
9 李雪亮,伍钒,王田天,等. 列车空调出风口导流板高度对冷凝风量影响研究[J]. 空气动力学学报,2022(6):155-162.
Li Xue-liang, Wu Fan, Wang Tian-tian, et al. Influence of deflector height on condensing air flux of high-speed train air conditioner[J]. Journal of Aerodynamics,2022,(6): 155-162.
10 毛小雨,沙雨宁,陶雨霖,等. ANSYS在流体动力学分析中的应用[J]. 广东化工, 2021,48(1):30-31.
Mao Xiao-yu, Sha Yu-ning, Tao Yu-lin. Application of ANSYS in fluid dynamics analysis[J]. Guangdong Chemical Industry, 2021, 48(1):30-31.
11 龙天渝,童思陈. 流体力学[M]. 重庆:重庆大学出版社, 2018.
12 余建祖. 换热器原理与设计[M]. 北京:北京航空航天大学出版社, 2006.
13 Wang H F, Zhou Y, Zou C,et al. Aerodynamic drag reduction of an Ahmed body based on deflectors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 34-44.
14 胡煜,刘烁玲,宋淑然. 基于Fluent的风送式喷雾机导流片仿真分析[J]. 现代农业装备,2021,42(5):28-35.
Hu Yu, Liu Shuo-ling, Song Shu-ran. Simulation and analysis of flow guide plate of air spray machine based on fluent[J]. Modern Agricultural Equipment, 2021, 42(5): 28-35.
15 董小杏. 基于CFD除霜风道结构分析及优化设计[J]. 机械,2018,45(12):26-28.
Dong Xiao-xing. Analysis and optimization design of defrosting duct structure based on CFD[J]. Machinery, 2018, 45 (12): 26-28.
16 敬文博,吴刚,范金永. 空调风道设计影响因素[J]. 汽车实用技术, 2016,27(7):86-88.
Jing Wen-bo, Wu Gang, Fan Jin-yong. Influencing factor of air conditioning duct design[J]. Automotive Practical Technology, 2016(7): 86-88.
17 吴雪良,陈伟健,唐清生. 全域风空调出风形态PIV试验和热舒适性研究[C]∥2021年中国家用电器技术大会论文集,中国合肥,2021:565-571.
Wu Xue-liang, Chen Wei-jian, Tang Qing-sheng. PIV test and thermal comfort study on outlet shape of full area air conditioning[C]∥ Proceedings of the 2021 China Household Appliance Technology Conference,Hefei,China, 2021: 565-571.
18 楚德见,刘云,郑涛. 基于CFD数值模拟的风道优化设计分析[C]∥2021年中国家用电器技术大会论文集,中国合肥,2021:1782-1786.
Chu De-jian, Liu Yun, Zheng Tao. Optimization design analysis of air duct based on CFD numerical simulation[C]∥ Proceedings of the 2021 China Household Appliance Technology Conference, Hefei,China,2021:1782-1786.
19 Lorenzini-Gutierrez D, Hernandez-Guerrero A, Luviano-Ortiz J L, et al. Numerical and experimental analysis of heat transfer enhancement in a grooved channel with curved flow deflectors[J]. Applied Thermal Engineering, 2015, 75:800-808.
20 Raymond J P, Va Nn Inathan M. Feedback stabilization of a 3D fluid flow by shape deformations of an obstacle[J]. ESAIM Control Optimisation and Calculus of Variations, 2021,27(1):No.65.
21 李忠范,高文森. 应用数理统计[M]. 北京:高等教育出版社, 2009.
22 吴希. 三种权重赋权法的比较分析[J]. 中国集体经济,2016,34:73-74.
Wu Xi. Comparative analysis of three weighting methods[J]. China's Collective Economy, 2016, 34: 73-74.
23 王帅. 装载机两种冷却系统热特性对比分析及优化研究[D].长春: 吉林大学机械与航空航天工程学院,2018.
Wang Shuai. Thermal characteristics comparison and optimization of two kinds of cooling systems for loaders[D]. Changchun:School of Mechanical and Aerospace Engineering, Jilin University, 2018.
[1] 李光保,高栋,路勇,平昊,周愿愿. 基于改进神经网络和Fluent的气液固技术的内表面处理[J]. 吉林大学学报(工学版), 2024, 54(6): 1537-1547.
[2] 刘元义,于圣洁,胥备,王宪良,宋发成. 基于离散元的设施农业就地翻土犁的研究与试验[J]. 吉林大学学报(工学版), 2024, 54(4): 1153-1165.
[3] 李义,吕晨阳,梁继才,梁策. 不规则Y形铝型材多点拉弯成形截面变形分析[J]. 吉林大学学报(工学版), 2024, 54(1): 105-113.
[4] 李建平,边永亮,杨欣,王鹏飞,李昕昊,薛春林. 果园多风机风送喷雾机作业参数优化与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2474-2485.
[5] 金文明,梁田,梁策,李义,李俊涛,梁继才. 工艺参数对汽车防护梁绕弯成形的截面变形影响[J]. 吉林大学学报(工学版), 2021, 51(4): 1182-1189.
[6] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[7] 孙博华, 邓伟文, 朱冰, 吴坚, 王姗姗. 基于反应式行为的车辆运动意图辨识[J]. 吉林大学学报(工学版), 2018, 48(1): 36-43.
[8] 张泽星, 陈国迎, 宗长富. 基于灵敏度分析的EPS转向性能试验客观评价指标[J]. 吉林大学学报(工学版), 2015, 45(4): 1043-1048.
[9] 齐龙, 谭祖庭, 马旭, 陈国锐, 谢俊锋, 邝健霞. 气动振动式匀种装置工作参数的优化及试验[J]. 吉林大学学报(工学版), 2014, 44(6): 1684-1691.
[10] 郑雪莲,李显生,任园园,杨猛. 瞬时液体冲击对汽车罐车侧倾稳定性的影响[J]. 吉林大学学报(工学版), 2014, 44(3): 625-630.
[11] 董立春1,韩志武2,吕尤2,牛士超2,马荣峰2,任露泉2. 凹坑型仿生形态环块样件耐磨性能[J]. 吉林大学学报(工学版), 2011, 41(6): 1659-1663.
[12] 韦大川, 王云鹏, 李世武, 孙文财, 杨志发. 橡胶粉/SBS复合改性沥青吸声系数试验[J]. 吉林大学学报(工学版), 2010, 40(增刊): 199-0203.
[13] 任丽丽, 周江, 佟金. 烯基琥珀酸酐表面改性淀粉膜羟基取代度的影响因素[J]. 吉林大学学报(工学版), 2010, 40(06): 1624-1628.
[14] 高峰;黄河;任露泉 . 新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验[J]. 吉林大学学报(工学版), 2008, 38(03): 586-0590.
[15] 王京春,陈丽莉,任露泉,谷松涛,丛茜 . 仿生注射器针头减阻试验研究[J]. 吉林大学学报(工学版), 2008, 38(02): 379-0382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!