吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 3064-3076.doi: 10.13229/j.cnki.jdxbgxb.20221593

• 通信与控制工程 • 上一篇    

在线和离线控制相结合的燃料电池有轨电车能量管理策略

高锋阳(),强雅昕,高智山,徐昊,史志龙   

  1. 兰州交通大学 自动化与电气工程学院,兰州 730070
  • 收稿日期:2022-12-13 出版日期:2024-10-01 发布日期:2024-11-22
  • 作者简介:高锋阳(1970-),男,教授级高工,硕士.研究方向:有轨电车混合储能系统能量管理策略.E-mail: ljdgaofy@lzjtu.edu.cn
  • 基金资助:
    中车“十四五”科技重大专项项目(2021CXZ021);国家重点研发计划项目(2017YFB1201003-020)

Energy management strategy for fuel cell trams combining online and offline control

Feng-yang GAO(),Ya-xin QIANG,Zhi-shan GAO,Hao XU,Zhi-long SHI   

  1. School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2022-12-13 Online:2024-10-01 Published:2024-11-22

摘要:

燃料电池/锂电池/超级电容混合动力有轨电车全局能量管理策略中的动态规划控制效果良好,能够较好地提高燃油经济性,但是其需要先验工况、计算量大、耗时长、无法实现在线控制,针对上述问题本文提出了一种改进策略。首先,根据有轨电车历史运行数据建立马尔科夫功率状态转移矩阵,对有轨电车运行工况进行预测;其次,利用滑动窗口大量连续、无限快速观测数据的特点对有轨电车中的燃料电池功率数据进行更新,加快动态规划算法的迭代速度,并以最小氢耗量为目标函数,通过逆向求解正向寻优获得最优控制;最后,将本文策略与状态机策略、传统动态规划策略进行对比分析。结果表明:本文策略运算时间相较于传统动态规划大幅减少,有效地减少了燃料电池大电流放电的次数和幅值,提高了燃料电池的耐久性;在有轨电车实时运行过程中对主辅电源进行合理的功率分配,提高了混合动力系统的燃油经济性和平均效率。

关键词: 混合动力有轨电车, 全局优化, 工况预测, 能量管理策略

Abstract:

The dynamic programming in the global energy management strategy of fuel cell/lithium battery/supercapacitor hybrid trams is effective and can improve the fuel economy, but it requires a priori operating conditions, is computationally intensive, time-consuming, and cannot be controlled online, and an improvement strategy is proposed to address the above problems. Firstly, the Markov power state transfer matrix is established based on the historical tram operation data to predict the tram operation conditions; secondly, the fuel cell power data in the tram is updated by using the sliding window with a large number of continuous and infinitely fast observation data to speed up the iteration of the dynamic planning algorithm, and the minimum hydrogen consumption is used as the objective function to obtain the optimal control by solving the forward search in the inverse direction. Finally, the proposed strategy is compared with the state machine strategy and the traditional dynamic planning strategy. The results show that the proposed strategy significantly reduces the operation time compared with the traditional dynamic planning, effectively reduces the number and amplitude of fuel cell high-current discharges, and improves the durability of the fuel cell; the reasonable power distribution of the main and auxiliary power sources during the real-time operation of the tram improves the fuel economy and average efficiency of the hybrid system.

Key words: hybrid tram, global optimization, working condition prediction, energy management strategy

中图分类号: 

  • TM91

图1

燃料电池混合动力有轨电车拓扑结构"

表1

有轨电车主要技术参数"

参 数数 值
驱动电机(8个)/kW8×110
变流器/VDC750(500~900)
轴重/t12
列车自重/t47
列车车体长度/mm31 075
续驶里程/km>40
最高运行速度/(km·h-160

图2

燃料电池模型"

图3

燃料电池单体极化测试曲线"

图4

燃料电池模型精度测试"

图5

锂电池RINT型等效电路"

图6

锂电池放电特性仿真曲线"

图7

锂电池模型精度测试"

图8

超级电容模型"

图9

超级电容模型精度测试"

图10

速度-需求功率概率分布"

图11

下一时刻需求功率状态转移矩阵"

图12

工况预测结果"

图13

滑动窗口更新图"

图14

双层循环控制框图"

表2

车载复合电源仿真参数"

参数数 值
燃料电池单体数量/个735
燃料电池堆电压/V540
燃料电池堆最大储氢量/kg14
锂电池组串并联数目114串2并
锂电池组额定电压/V331
锂电池组最大放电电流/A120
超级电容组串并联数量/个11串3并
超级电容组额定电压/V750
超级电容组最大电流/A98(持续);1 900(1 s)

图15

三种策略下的功率分配对比"

图16

三种策略下锂电池和超级电容SOC对比"

图17

三种策略下氢耗量与燃料电池电流对比"

表3

仿真结果对比"

对比指标状态机传统动态规划本文策略
系统氢耗量/kg2.872.652.29
系统效率/%78.2583.6189.72
锂电池SOC始末状态差值/%-4.83.50
超级电容SOC最大偏移率/%31.610.59.4
燃料电池峰值电流/A100.580.740.3
1 刘继宗,吴小平,孔维华.基于鱼群优化算法的有轨电车用燃料电池混合动力系统参数配置[J].吉林大学学报:工学版,2022,52(9):2004-2013.
Liu Ji-zong, Wu Xiao-ping, Kong Wei-hua. Parameter configuration of fuel cell hybrid power system for trams based on fish swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2004-2013.
2 王玲,李欣然,马亚辉,等. 燃料电池发电系统的机电动态模型[J]. 中国电机工程学报, 2011, 31(22): 40-47.
Wang Ling, Li Xin-ran, Ma Ya-hui, et al. Dynamic model of fuel cell power generating system[J]. Proceedings of the CSEE, 2011, 31(22): 40-47.
3 Wang Y, Yang Z, Lin F, et al. A hybrid energy management strategy based on line prediction and condition analysis for the hybrid energy storage system of tram[J]. IEEE Transactions on Industry Applications, 2022, 56(2): 1793-1803.
4 张晗,杨继斌,张继业,等. 燃料电池有轨电车能量管理与速度曲线协同优化[J].机械工程学报,2022,58(10):169-179.
Zhang Han, Yang Ji-bin, Zhang Ji-ye, et al. Cooperative optimization for fuel cell tram energy management and speed profile[J]. Journal of Mechanical Engineering, 2022, 58(10): 169-179.
5 Li Q, Chen W R, Liu Z X, et al. Net power control based on linear matrix inequality for proton exchange membrane fuel cell system[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 1-8.
6 Li Q, Wang T H, Dai C H, et al. Power management strategy based on adaptive droop control for a fuel cell battery supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018,67(7): 5658-5670.
7 陈维荣,燕雨,李奇. 基于状态机的燃料电池混合动力系统控制策略[J]. 西南交通大学学报, 2019, 54(4): 663-670.
Chen Wei-rong, Yan Yu, Li Qi. Control strategy based on state machine for fuel cell hybrid power system[J]. Journal of Southwest Jiaotong University, 2019,54(4):663-670.
8 Torreglosa J P, Jurado F, García P, et al. Application of cascade and fuzzy logic based control in a model of a fuel-cell hybrid tramway[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1):1-11.
9 高锋阳,张浩然,王文祥,等.氢燃料电池有轨电车混合储能系统的节能运行优化[J].电工技术学报,2022,37(3):686-696.
Gao Feng-yang, Zhang Hao-ran, Wang Wen-xiang, et al. Energy saving operation optimization of hybrid energy storage system for hydrogen fuel cell tram[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 686-696.
10 张国瑞,李奇,韩莹,等.基于运行模式和动态混合度的燃料电池混合动力有轨电车等效氢耗最小化能量管理方法研究[J].中国电机工程学报,2018,38(23):6905-6914, 7124.
Zhang Guo-rui, Li Qi, Han Ying, et al. Study on equivalent consumption minimization strategy based on operation mode and ddoh for fuel cell hybrid tramway[J]. Proceedings of the CSEE, 2018, 38(23): 6905-6914, 7124.
11 Li Q, Su B, Pu Y, et al. A state machine control based on equivalent consumption minimization for fuel cell/supercapacitor hybrid tramway[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 552-563.
12 申彩英,夏超英. 基于改进型动态规划算法的串联混合动力汽车控制策略[J]. 控制理论与应用, 2011, 28(3): 427-432.
Shen Cai-ying, Xia Chao-ying. Control strategy of series hybrid electric vehicle based on improved dynamic programming[J]. Control Theory & Applications, 2011, 28(3): 427-432.
13 左义和,项昌乐,闫清东,等. 基于动态规划算法的混联混合动力汽车控制策略[J]. 吉林大学学报:工学版, 2011, 41(4): 898-903.
Zuo Yi-he, Xiang Chang-le, Yan Qing-dong, et al. Parallel-serial hybrid electrical vehicle control strategy based on dynamic programming algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2011,41(4): 898-903.
14 陈维荣,胡斌彬,李奇,等. 基于动态规划的混合动力有轨电车能量管理方法[J]. 西南交通大学学报, 2020, 55(5): 903-911.
Chen Wei-rong, Hu Bin-bin, Li Qi, et al. Energy management method for hybrid electric tram based on dynamic programming algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 903-911.
15 林泓涛,姜久春,贾志东,等. 权重系数自适应调整的混合储能系统多目标模型预测控制[J]. 中国电机工程学报, 2018, 38(18): 5538-5547.
Lin Hong-tao, Jiang Jiu-chun, Jia Zhi-dong, et al. Multi objective model predictive control for hybrid energy storage system with adaptive adjustment of weight coefficients[J]. Proceedings of the CSEE, 2018, 38(18): 5538-5547.
16 王哲,谢怡,孙维,等. 燃料电池客车动力系统建模与能量管理策略研究[J]. 同济大学学报:自然科学版, 2019, 47(1): 97-103, 123.
Wang Zhe, Xie Yi, Sun Wei, et al. Research on modeling of fuel cell bus power system and energy management strategy[J]. Journal of Tongji University (Natural Science Edition), 2019, 47(1): 97-103, 123.
17 陈维荣,时方力,戴朝华,等. 基于动态混合度的储能式有轨电车能量管理策略[J]. 西南交通大学学报, 2020, 55(2): 409-416.
Chen Wei-rong, Shi Fang-li, Dai Chao-hua, et al. Energy management strategy of hybrid tram based on dynamic degree of hybrid[J]. Journal of Southwest Jiaoton University, 2020, 55(2): 409-416.
18 Hu Y, Yurkovich S. Linear parameter varying battery model identification using subspace methods[J]. Journal of Power Sources, 2011, 196(5): 2913-2923.
19 Zubieta L, Bonert R.Characterization of double-layer capacitors for power electronics applications[J]. IEEE Transactions on Industry Applications, 2000, 36(1):199-205.
20 Miniguano H, Barrado A, Lázaro A. Li-ion battery and supercapacitor modeling for electric vehicles based on pulse-pseudo random binary sequence[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11378-11389.
21 席利贺,张欣,耿聪,等. 基于动态规划算法的增程式电动汽车能量管理策略优化[J]. 交通运输工程学报, 2018, 18(3): 148-156.
Xi Li-he, Zhang Xin, Geng Cong,et al.Energy management strategy optimization of extended-range electric vehicle based on dynamic programming[J]. Journal of Traffic and Trasportation Engineering, 2018, 18(3): 148-156.
22 何俊强,师长立,韦统振. 基于马尔科夫链的自适应储能需求功率预测模型[J]. 电工技术学报, 2021, 36(): 563-571.
He Jun-qiang, Shi Chang-li, Wei Tong-zhen. Adaptive power demand prediction model of energy storage based on markov chain[J]. Transactions of China Electrotechnical Society, 2021, 36(Sup.2): 563-571.
23 Zhang M, Shi S M, Lin N, et al. High-efficiency driving cycle generation using a markov chain evolution algorithm[J].IEEE Transactions on Vehicular Technology,2019, 68(2): 1288-1301.
24 Shakil S, Billings J C, Keilholz S D.Parametric dependencies of sliding window correlation[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(2): 254-263.
[1] 王玉海,李晓之,李兴坤. 面向高速工况的混合动力卡车预见性节能算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2121-2129.
[2] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[3] 王哲,谢怡,臧鹏飞,王耀. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36-43.
[4] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[5] 孙亮, 徐海浪, 葛宏伟. 保证全局收敛的随机粒子群新算法[J]. 吉林大学学报(工学版), 2017, 47(2): 615-623.
[6] 夏超英, 杜智明. 丰田PRIUS混合动力汽车能量优化管理策略仿真分析[J]. 吉林大学学报(工学版), 2017, 47(2): 373-383.
[7] 宋康, 陈潇凯, 林逸. 动力总成悬置系统的稳健设计[J]. 吉林大学学报(工学版), 2016, 46(3): 692-699.
[8] 秦大同, 杨官龙, 胡明辉, 刘永刚, 林毓培. 基于驾驶意图的插电式混合动力汽车能量管理策略[J]. 吉林大学学报(工学版), 2015, 45(6): 1743-1750.
[9] 田野, 刘大有, 齐红. 基于改进的单纯形和微分进化的混合优化算法[J]. 吉林大学学报(工学版), 2011, 41(02): 430-0434.
[10] 金弟,,刘大有,,黄晶,,何东晓,,王新华, . 基于免疫和进化扩散算法的全局优化问题求解算法[J]. 吉林大学学报(工学版), 2009, 39(01): 124-130.
[11] 赵文红,王巍,,王宇平,郝明强3 . 改进的基于平滑函数的全局优化进化算法[J]. 吉林大学学报(工学版), 2008, 38(04): 865-870.
[12] 张晓伟,刘三阳,迟晓妮 . 高效求解多峰值全局优化的区间-遗传算法
[J]. 吉林大学学报(工学版), 2008, 38(04): 876-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!