吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1743-1750.doi: 10.13229/j.cnki.jdxbgxb201506002

• 论文 • 上一篇    下一篇

基于驾驶意图的插电式混合动力汽车能量管理策略

秦大同, 杨官龙, 胡明辉, 刘永刚, 林毓培   

  1. 重庆大学 机械传动国家重点实验室,重庆 400044
  • 收稿日期:2014-04-04 出版日期:2015-11-01 发布日期:2015-11-01
  • 作者简介:秦大同(1956-),男,教授,博士生导师.研究方向:智能传动与控制.E-mail:dtqin@cqu.edu.cn
  • 基金资助:

    国家科技支撑计划项目(2013BAG 12B00); 国家自然科学基金项目(51305468)

Energy management strategy of plug-in hybridelectric system based on driving intention

QIN Da-tong, YANG Guan-long, HU Ming-hui, LIU Yong-gang, LIN Yu-pei   

  1. The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044,China
  • Received:2014-04-04 Online:2015-11-01 Published:2015-11-01

摘要:

为了使插电式混合动力汽车(PHEV)在不同驾驶意图下合理使用电池电能以获得更好的能耗经济性,采用模糊推理控制器识别驾驶员意图,依据混合动力系统的动力耦合方式、电池荷电状态(SOC)及发动机特性曲线进行工作模式划分,建立能耗经济性目标函数,运用瞬时优化方法进行发动机和电机转矩分配,在此基础上提出了基于驾驶意图的能量管理策略。利用Matlab/Simulink仿真平台搭建整车模型,在新欧洲驾驶循环(NEDC)工况下进行仿真分析,结果表明:采用该能量管理策略可以实现发动机和ISG电机的优化控制,使发动机的工作点总体运行在高效区;与电量消耗(CD)-电量维持(CS)模式的能量管理策略相比,百公里油耗降低了8.24%。通过整车道路试验对所提出的能量管理策略的有效性进行验证,结果表明:采用该能量管理策略的插电式混合动力汽车的百公里油耗较原汽油车降低32.93%。

关键词: 车辆工程, 插电式混合动力汽车, 驾驶意图, 能量管理策略, 百公里油耗

Abstract:

In order to obtain good energy consumption economy for Plug-in Hybrid Electric Vehicle (PHEV) and reasonably distribute battery power under different driving condition, a fuzzy inference controller is used to identify the driver's intention. The working mode is partitioned according to the hybrid system dynamic coupling mode, the State of Charge (SOC) of the battery and the engine working characteristic curve. Then, instantaneous optimization method is used to distribute engine and motor torque, in which the energy consumption economy is taken as the objective function. Finally, the energy management strategy based on driving intention is proposed. A vehicle model is built on the Matlab/Simulink platform, and simulated under New European Driving Cycle (NEDC) condition. Simulation results indicate that the proposed strategy can realize the optimization control of the engine and ISG motor and keep the engine operation points within the peak efficiency region. The fuel consumption per 100 km is saved by 8.24% in comparison with the energy management strategy of the charge depleting and charge sustaining mode. In order to further verify the proposed energy management strategy, vehicle road test is conducted, and results show that the fuel consumption per 100 km is reduced by 32.93% compared with prototype gasoline vehicle.

Key words: vehicle engineering, plug-in hybrid electric vehicle, driving intention, energy management strategy, fuel consumption per hundred kilometers

中图分类号: 

  • U461.8
[1] Chen Z, Ardalan V. Route preview in energy management of plug-in hybrid vehicles[J]. IEEE Transactions on Control Systems Technology, 2012,20(2):546-553.
[2] 崔纳新,步刚,吴剑,等. Plug-In并联式混合动力汽车实时优化能量管理策略[J].电工技术学报,2011,26(11):155-160.
Cui Na-xin, Bu Gang, Wu Jian, et al. Real-Time optimiztion of energy management stragegy for plug-in parallel hybrid electric vehicles[J]. Transactions of China Electrotechnical Society,2011,26(11):155-160.
[3] He Y M, Chowdhury M, Pisu P, et al. An energy optimization strategy for power-split drivetrain plug-in hybrid electric vehicles[J]. Transportation Research Part C:Emerging Technologies,2012,22:29-41.
[4] Khayyer P, Wollaeger J, Onori S, et al. Analysis of impact factors plug-in hybrid electric vehicles[C]∥2012 15th International IEEE Conference on Intelligent Transportation Systems: Alaska,2012:1061-1066.
[5] Geng B, Mills J K, Sun D. Two-stage energy management control of fuel cell plug-In hybrid electric vehicles considering fuel cell longevity[J]. IEEE Transactions on Vehicular Technology,2012,61(2):498-508.
[6] 张博,郑贺悦,王成. 可外接充电混合动力汽车能量管理策略[J].机械工程学报,2011,47(6):113-119.
Zhang Bo, Zheng He-yue, Wang cheng. Plug-in hybrid electric vehicle energy management strategy[J]. Journal of Mechanical Engineering,2011,47(6):113-119.
[7] Gong Qiu-ming, Li Yao-yu, Peng Zhong-ren. Trip-based optimal power management of plug-In hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology,2008,57(6):3393-3401.
[8] Moura S, Callaway D, Fathy H, et al. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles[J]. Journal of Power Sources,2010,195(9):2979-2988.
[9] Moura S, Fathy H, Callaway D, et al. A stochastic optimal control approach for power management in plug-In hybrid electric vehicles[J]. IEEE Transaction on Control Systems Technology, 2011,19(3):545-555.
[10] Shams-Zahraei M, Kouzani A, Kutter S, et al. Integrated thermal and energy management of plug-in hybrid electric vehicles[J]. Journal of Power Sources,2012,216:237-248.
[11] Kim N,Cha S,Peng H. Optimal control of hybrid electric vehicles based on pontryagin's minimum principle[J]. IEEE Transactions on Control System Technology,2011,19(5):1279-1287.
[12] Banvait H, Anwar S,Chen Y B. A rule based energy management strategy for plug-in hybrid electric vehicle[C]∥IEEE American Control Conference,St.Louis,2009:3938-3943.
[13] 张志,杨芸芸. 插电式混合动力SUV车控制策略研究[J]. 武汉理工大学学报:信息与管理工程版,2012,34(2):181-185.
Zhang Zhi, Yang Yun-yun. Energy management strategy of plug-in hybrid electric SUV[J]. Journal of WUT (Information & Management Engineering),2012,34(2):181-185.
[14] 罗国鹏,罗禹贡,李克强. 基于最佳电能使用的插电式混合动力客车控制策略[J].汽车工程,2012,34(6):475-478.
Luo Guo-peng,Luo Yu-gong,Li Ke-qiang. Control strategy for Plug-In hybrid electric bus based on optimal electric energy use[J]. Automotive Engineering,2012,34(6):475-478.
[15] 周能辉,赵春明,辛明华,等. 插电式混合动力轿车整车控制策略的研究[J].汽车工程,2013,35(2):99-104.
Zhou Neng-hui,Zhao Chun-ming,Xin Ming-hua,et al. A research on the vehicle control strategy of a plug-in hybrid electric car[J]. Automotive Engineering,2013,35(2):99-104.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!