吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2044-2054.doi: 10.13229/j.cnki.jdxbgxb20220215
• • 上一篇
陈凤祥1(),伍琪1,李元松2,莫天德3,李煜3,黄李平4,苏建红4,张卫东5
Feng-xiang CHEN1(),Qi WU1,Yuan-song LI2,Tian-de MO3,Yu LI3,Li-ping HUANG4,Jian-hong SU4,Wei-dong ZHANG5
摘要:
采用10 kW燃料电池系统和25 A·h锂电池组(2 kW·h)匹配了一台2.5吨燃料电池混合动力叉车的动力系统,并提出了一种模式识别的功率跟随能量管理策略。在此基础上,建立了整车模型并进行仿真,验证了系统匹配及能量管理策略的有效性。结果表明:在一定程度上锂电池组的稳定荷电状态越低,使用经济性越好;合理的锂电池组切换荷电状态能提高系统的稳定性;燃料电池系统额定功率至少需要大于工况平均功率15%;在启动后锂电池电量下降的动态过程中,较大的锂电池组容量能够减小燃料电池系统平均功率,提高使用经济性,反之则无法维持系统长时间工作,且工作时荷电状态波动率较大,影响使用寿命。
中图分类号:
1 | 温序晖, 杨海玉. 叉车用燃料电池概述[J]. 东方电气评论, 2020, 34(1): 6-11. |
Wen Xu-hui, Yang Hai-yu. Review of fuel cell applied for forklift[J]. Dongfang Electric Review, 2020, 34(1): 6-11. | |
2 | 沈忱. 叉车用燃料电池混合动力系统集成及能量管理策略研究[D]. 杭州:浙江大学工程师学院, 2021. |
Shen Chen. Fuel cell hybrid forklift system integration and research on energy management strategy[D]. Hangzhou: Polytechnic Institute, Zhejiang University, 2021. | |
3 | 任春龙. 叉车用PEMFC/蓄电池混合动力系统仿真研究[D]. 哈尔滨:东北林业大学工程技术学院, 2020. |
Ren Chun-long. Research and Simulation of hybrid power system for fuel cell battery of forklift truck[D]. Harbin: College of Engineering and Technology, Northeast Forestry University, 2020. | |
4 | Chan E, Dawson F, Bekker H, et al. A software simulation program for a hybrid fuel cell-battery power supply for an electric forklift[C]∥Proceedings of the 12th European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007: No. 9852408. |
5 | Keränen T M, Karimaki H, Viitakangas J, et al. Development of integrated fuel cell hybrid power source for electric forklift[J]. Journal of Power Sources, 2011, 196(21): 9058-9068. |
6 | 杨洁. 叉车质子交换膜燃料电池混合动力系统构建与仿真[D]. 哈尔滨:东北林业大学工程技术学院, 2019. |
Yang Jie. Construction and simulation of hybrid power system for proton exchange membrane fuel cell of forklift[D]. Harbin: College of Engineering and Technology, Northeast Forestry University, 2019. | |
7 | Pacheco D S, Gonzalez L G, Espinoza J L, et al. Energy consumption of an electric forklift truck: alternative with fuel cell and supercapacitor[C]∥IEEE International Autumn Meeting on Power, Ixtapa, MEXICO: Electronics and Computing (ROPEC), 2019 :11-15. |
8 | Hosseinzadeh E, Rokni M, Advani S G, et al. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4241-4249. |
9 | Zhang Z, Mortensen H H, Jensen J V, et al. Fuel cell and battery powered forklifts[C]∥The 9th IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 2013: No.13917769. |
10 | 游志宇. PEMFC混合动力叉车能量管理策略及应用研究[D]. 成都:西南交通大学电气工程学院, 2015. |
You Zhi-yu. Strategy and application study on energy management of proton exchange membrane fuel cell hybrid forklift[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015. | |
11 | Radica G, Tolj I, Markota D, et al. Control strategy of a fuel-cell power module for electric forklift[J]. International Journal of Hydrogen Energy, 2021, 46(72): 35938-35948. |
12 | 徐煜超. 燃料电池混合动力叉车动力系统设计研究[D]. 青岛:青岛理工大学汽车与交通学院, 2018. |
Xu Yu-chao. Design and study of fuel cell hybrid forklift power system[D]. Qingdao: School of Auto and Transportation, Qingdao University of Technology, 2018. | |
13 | 周静. 燃料电池混合动力叉车动力系统设计与仿真[D]. 西安:长安大学工程机械学院, 2019. |
Zhou Jing. Design and simulation of fuel cell hybrid forklift power system[D]. Xi'an: School of Construction Machinery, Chang'an University, 2019. | |
14 | 郭高易. 叉车用燃料电池混合动力系统能量管理策略研究[D]. 成都:西南交通大学电气工程学院, 2018. |
Guo Gao-yi. Research and design of energy management strategy for fuel cell hybrid power system of forklift truck[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2018. | |
15 | 张德玉. 燃料电池/蓄电池混合动力叉车电源系统设计[D]. 成都:西南交通大学电气工程学院, 2015. |
Zhang De-yu. Design for power system of fuel cell/battery hybrid forklift[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015. | |
16 | 于远彬, 王庆年, 王伟华, 等. 应用复合电源的轻度混合动力汽车的参数匹配[J].吉林大学学报: 工学版, 2009, 39(2): 281-285. |
Yu Yuan-bin, Wang Qing-nian, Wang Wei-hua, et al. Parameter matching of mild hybrid electric vehicle with compound power supply[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(2): 281-285. | |
17 | 余志生. 汽车理论[M]. 5版. 北京:机械工业出版社,2009. |
18 | Puranik S V, Keyhani A, Khorrami F. State-space modeling of proton exchange membrane fuel cell[J]. Ieee Transactions on Energy Conversion, 2010, 25(3): 804-813. |
19 | O'hayre R, Cha S-W, Colella W, et al. Fuel Cell Fundamentals[M]. Hoboken, US: John Wiley & Sons, 2016. |
20 | 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43. |
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(1):36-43. | |
21 | Nemes R, Ciornei S, Ruba M, et al. Modeling and simulation of first-order Li-Ion battery cell with experimental validation[C]∥Proceedings of the 8th International Conference on Modern Power Systems(MPS), Cluj-Napoca, Romania, 2019: 21-23. |
22 | 匡累, 黄振华, 严杰, 等. 关于燃料电池电动汽车能耗计算方法的研究[J]. 现代车用动力, 2021, 46(3): 47-50. |
Kuang Lei, Huang Zhen-hua, Yan Jie, et al. Research on calculation method of fuel cell electric vehicle power consumption[J]. Modern Vehicle Power, 2021, 46(3): 47-50. | |
23 | 强维博. 叉车混合动力系统设计及控制策略研究 [D]. 长沙: 中南大学机电工程学院, 2013. |
Qiang Wei-bo. Hybrid power-train system design and research on control strategy for forklift[D]. Changsha: College of Mechanical and Electrical Engineering, Central South University, 2013. | |
24 | . 平衡重式叉车整机试验方法 [S]. |
25 | 张涛, 宋珂, 章桐. 基于经济性的燃料电池汽车混合度对比研究[J]. 机电一体化, 2015, 21(7): 11-16. |
Zhang Tao, Song Ke, Zhang Tong. Comparative study on degree of hybridization for fuel cell electric vehicle based on economy[J]. Mechatronics, 2015, 21(7): 11-16. |
[1] | 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003. |
[2] | 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970. |
[3] | 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024. |
[4] | 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776. |
[5] | 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740. |
[6] | 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758. |
[7] | 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750. |
[8] | 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551. |
[9] | 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695. |
[10] | 郝帅,程川泰,王军年,张君媛,俞有. 运动型SUV驾驶室布置人机优化设计与测试评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1477-1488. |
[11] | 张家旭,郭崇,王晨,赵健,王欣志. 基于半实物仿真平台的自动泊车系统性能评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1552-1560. |
[12] | 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244. |
[13] | 李雄,兰凤崇,陈吉清,童芳. Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比[J]. 吉林大学学报(工学版), 2022, 52(6): 1264-1272. |
[14] | 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280. |
[15] | 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753. |
|