吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2044-2054.doi: 10.13229/j.cnki.jdxbgxb20220215

• • 上一篇    

2.5吨燃料电池混合动力叉车匹配、仿真及优化

陈凤祥1(),伍琪1,李元松2,莫天德3,李煜3,黄李平4,苏建红4,张卫东5   

  1. 1.同济大学 汽车学院,上海 201804
    2.浙江杭叉集团股份有限公司 技术中心,杭州 311305
    3.香港生产力促进局 智慧城市部,香港特别行政区 999077
    4.安徽江淮银联重型工程机械有限公司 电动叉车研究所,合肥 230051
    5.海南大学 信息与通信工程学院,海口 570228
  • 收稿日期:2022-03-06 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:陈凤祥(1978-),男,副教授,博士. 研究方向:燃料电池控制技术. E-mail:fxchen@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(U21A20166)

Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift

Feng-xiang CHEN1(),Qi WU1,Yuan-song LI2,Tian-de MO3,Yu LI3,Li-ping HUANG4,Jian-hong SU4,Wei-dong ZHANG5   

  1. 1.College of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Technical Center,Zhejiang Hangcha Group Co. ,Ltd. ,Hangzhou 311305,China
    3.Smart City Division,Hong Kong Productivity Council,Hong Kong 999077,China
    4.Electric Forklift Research Institute,JAC Heavy-Duty Construction Machine Co. ,Ltd. ,Hefei 230051,China
    5.School of Information and Communication Engineering,Hainan University,Haikou 570228,China
  • Received:2022-03-06 Online:2022-09-01 Published:2022-09-13

摘要:

采用10 kW燃料电池系统和25 A·h锂电池组(2 kW·h)匹配了一台2.5吨燃料电池混合动力叉车的动力系统,并提出了一种模式识别的功率跟随能量管理策略。在此基础上,建立了整车模型并进行仿真,验证了系统匹配及能量管理策略的有效性。结果表明:在一定程度上锂电池组的稳定荷电状态越低,使用经济性越好;合理的锂电池组切换荷电状态能提高系统的稳定性;燃料电池系统额定功率至少需要大于工况平均功率15%;在启动后锂电池电量下降的动态过程中,较大的锂电池组容量能够减小燃料电池系统平均功率,提高使用经济性,反之则无法维持系统长时间工作,且工作时荷电状态波动率较大,影响使用寿命。

关键词: 车辆工程, 燃料电池混合动力叉车, 叉车模型, 能量管理策略, 混合度

Abstract:

A kind of propulsion system of a 2.5-ton fuel cell hybrid forklift was matched, which mainly consists of a 10 kW fuel cell system and a 25 A·h lithium battery pack (2 kW·h). And a power following energy management strategy of state recognition was established. The forklift model was created and simulated to verify the system and strategy. The results show that decreasing the keeping state of charge could improve the fuel economy and a reasonable switching state of charge could improve the stability of the system. The rated power of fuel cell system should be at least 15% higher than the average power under working conditions. During the dynamic process of state of charge decline after startup, the large capacity of battery could reduce the average power of the fuel cell system then improve the fuel economy. On the contrary, it wouldn't support the system to work a long time and could lead to an extreme state of charge volatility which would shorten its service life.

Key words: vehicle engineering, fuel cell hybrid forklift, forklift model, energy management strategy, degree of hybridization

中图分类号: 

  • U469.72

图1

燃料电池混合动力系统结构"

图2

燃料电池混动叉车拓扑结构"

表1

燃料电池混动叉车目标参数"

参数单位数值
自重kg4100
额定载荷kg2500
起升高度mm3000
最大行驶速度km/h13
最大起升速度mm/s280
最大下降速度mm/s430
最大爬坡能力%15

表2

燃料电池系统基本参数"

参数单位数值
额定功率kW10
输出电压V30~52
最高效率%59
环境温度-30~55

图3

燃料电池混动系统组装模型"

图4

极化曲线"

图5

燃料电池系统功率及效率图"

图6

锂电池一阶等效电路模型"

图7

工作模式识别"

图8

功率跟随控制策略"

图9

测试循环路径"

图10

叉车运动及工作速度"

图11

不同SOCinitial下锂电池SOC变化"

图12

SOCinitial=0.8下叉车需求功率及其分配"

图13

不同SOCopt下锂电池SOC变化"

表3

不同SOCopt下工作3600 s的性能指标"

性能指标SOCopt
0.70.60.5
燃料电池系统平均效率/%54.7855.1155.44
耗氢量/g379.34364.26349.78
总等效耗氢量/g380.50375.03371.95
燃料电池系统平均功率/W6533.906304.106075.30
锂电池组平均功率/W-19.80186.40385.10

图14

不同SOCset下锂电池SOC变化"

表4

不同SOCset下工作1500s性能指标"

性能指标SOCset
0.80.70.6
燃料电池系统平均效率/%56.0456.0356.02
耗氢量/g133.99134.04134.13
总等效耗氢量/g152.12152.19152.25
燃料电池系统平均功率/W5651.705658.705661.60
锂电池组平均功率/W766.30765.90763.50

图15

不同燃料电池系统额定功率下锂电池组SOC变化"

图16

不同锂电池组容量下SOC变化"

图17

波动率与总等效耗氢量随锂电池组容量变化"

1 温序晖, 杨海玉. 叉车用燃料电池概述[J]. 东方电气评论, 2020, 34(1): 6-11.
Wen Xu-hui, Yang Hai-yu. Review of fuel cell applied for forklift[J]. Dongfang Electric Review, 2020, 34(1): 6-11.
2 沈忱. 叉车用燃料电池混合动力系统集成及能量管理策略研究[D]. 杭州:浙江大学工程师学院, 2021.
Shen Chen. Fuel cell hybrid forklift system integration and research on energy management strategy[D]. Hangzhou: Polytechnic Institute, Zhejiang University, 2021.
3 任春龙. 叉车用PEMFC/蓄电池混合动力系统仿真研究[D]. 哈尔滨:东北林业大学工程技术学院, 2020.
Ren Chun-long. Research and Simulation of hybrid power system for fuel cell battery of forklift truck[D]. Harbin: College of Engineering and Technology, Northeast Forestry University, 2020.
4 Chan E, Dawson F, Bekker H, et al. A software simulation program for a hybrid fuel cell-battery power supply for an electric forklift[C]∥Proceedings of the 12th European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007: No. 9852408.
5 Keränen T M, Karimaki H, Viitakangas J, et al. Development of integrated fuel cell hybrid power source for electric forklift[J]. Journal of Power Sources, 2011, 196(21): 9058-9068.
6 杨洁. 叉车质子交换膜燃料电池混合动力系统构建与仿真[D]. 哈尔滨:东北林业大学工程技术学院, 2019.
Yang Jie. Construction and simulation of hybrid power system for proton exchange membrane fuel cell of forklift[D]. Harbin: College of Engineering and Technology, Northeast Forestry University, 2019.
7 Pacheco D S, Gonzalez L G, Espinoza J L, et al. Energy consumption of an electric forklift truck: alternative with fuel cell and supercapacitor[C]∥IEEE International Autumn Meeting on Power, Ixtapa, MEXICO: Electronics and Computing (ROPEC), 2019 :11-15.
8 Hosseinzadeh E, Rokni M, Advani S G, et al. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4241-4249.
9 Zhang Z, Mortensen H H, Jensen J V, et al. Fuel cell and battery powered forklifts[C]∥The 9th IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 2013: No.13917769.
10 游志宇. PEMFC混合动力叉车能量管理策略及应用研究[D]. 成都:西南交通大学电气工程学院, 2015.
You Zhi-yu. Strategy and application study on energy management of proton exchange membrane fuel cell hybrid forklift[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015.
11 Radica G, Tolj I, Markota D, et al. Control strategy of a fuel-cell power module for electric forklift[J]. International Journal of Hydrogen Energy, 2021, 46(72): 35938-35948.
12 徐煜超. 燃料电池混合动力叉车动力系统设计研究[D]. 青岛:青岛理工大学汽车与交通学院, 2018.
Xu Yu-chao. Design and study of fuel cell hybrid forklift power system[D]. Qingdao: School of Auto and Transportation, Qingdao University of Technology, 2018.
13 周静. 燃料电池混合动力叉车动力系统设计与仿真[D]. 西安:长安大学工程机械学院, 2019.
Zhou Jing. Design and simulation of fuel cell hybrid forklift power system[D]. Xi'an: School of Construction Machinery, Chang'an University, 2019.
14 郭高易. 叉车用燃料电池混合动力系统能量管理策略研究[D]. 成都:西南交通大学电气工程学院, 2018.
Guo Gao-yi. Research and design of energy management strategy for fuel cell hybrid power system of forklift truck[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2018.
15 张德玉. 燃料电池/蓄电池混合动力叉车电源系统设计[D]. 成都:西南交通大学电气工程学院, 2015.
Zhang De-yu. Design for power system of fuel cell/battery hybrid forklift[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015.
16 于远彬, 王庆年, 王伟华, 等. 应用复合电源的轻度混合动力汽车的参数匹配[J].吉林大学学报: 工学版, 2009, 39(2): 281-285.
Yu Yuan-bin, Wang Qing-nian, Wang Wei-hua, et al. Parameter matching of mild hybrid electric vehicle with compound power supply[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(2): 281-285.
17 余志生. 汽车理论[M]. 5版. 北京:机械工业出版社,2009.
18 Puranik S V, Keyhani A, Khorrami F. State-space modeling of proton exchange membrane fuel cell[J]. Ieee Transactions on Energy Conversion, 2010, 25(3): 804-813.
19 O'hayre R, Cha S-W, Colella W, et al. Fuel Cell Fundamentals[M]. Hoboken, US: John Wiley & Sons, 2016.
20 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(1):36-43.
21 Nemes R, Ciornei S, Ruba M, et al. Modeling and simulation of first-order Li-Ion battery cell with experimental validation[C]∥Proceedings of the 8th International Conference on Modern Power Systems(MPS), Cluj-Napoca, Romania, 2019: 21-23.
22 匡累, 黄振华, 严杰, 等. 关于燃料电池电动汽车能耗计算方法的研究[J]. 现代车用动力, 2021, 46(3): 47-50.
Kuang Lei, Huang Zhen-hua, Yan Jie, et al. Research on calculation method of fuel cell electric vehicle power consumption[J]. Modern Vehicle Power, 2021, 46(3): 47-50.
23 强维博. 叉车混合动力系统设计及控制策略研究 [D]. 长沙: 中南大学机电工程学院, 2013.
Qiang Wei-bo. Hybrid power-train system design and research on control strategy for forklift[D]. Changsha: College of Mechanical and Electrical Engineering, Central South University, 2013.
24 . 平衡重式叉车整机试验方法 [S].
25 张涛, 宋珂, 章桐. 基于经济性的燃料电池汽车混合度对比研究[J]. 机电一体化, 2015, 21(7): 11-16.
Zhang Tao, Song Ke, Zhang Tong. Comparative study on degree of hybridization for fuel cell electric vehicle based on economy[J]. Mechatronics, 2015, 21(7): 11-16.
[1] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[2] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[3] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[4] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[5] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[6] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[7] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
[8] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[9] 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695.
[10] 郝帅,程川泰,王军年,张君媛,俞有. 运动型SUV驾驶室布置人机优化设计与测试评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1477-1488.
[11] 张家旭,郭崇,王晨,赵健,王欣志. 基于半实物仿真平台的自动泊车系统性能评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1552-1560.
[12] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[13] 李雄,兰凤崇,陈吉清,童芳. Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比[J]. 吉林大学学报(工学版), 2022, 52(6): 1264-1272.
[14] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
[15] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!