吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3158-3167.doi: 10.13229/j.cnki.jdxbgxb.20230065

• 车辆工程·机械工程 • 上一篇    

基于主成分分析赋权的变轨距列车悬挂参数优化

刘玉梅1(),胡婷1,庄娇娇2,盛佳香1,周殿买3   

  1. 1.吉林大学 交通学院,长春 130022
    2.临沂大学 机械与车辆工程学院,山东 临沂 276000
    3.中车长春轨道客车股份有限公司,长春 130062
  • 收稿日期:2023-01-21 出版日期:2024-11-01 发布日期:2025-04-24
  • 作者简介:刘玉梅(1966-),女,教授,博士. 研究方向:车辆智能化检测与轨道车辆装备. E-mail:lymlls@163.com
  • 基金资助:
    吉林省科技厅重点研发项目(20200401108GX);吉林省科技厅重大研发专项项目(20210301006GX)

Optimization of suspension parameters for variable-gauge trains based on the PCA assignment

Yu-mei LIU1(),Ting HU1,Jiao-jiao ZHUANG2,Jia-xiang SHENG1,Dian-mai ZHOU3   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.School of Mechanical andVehicle Engineer,Linyi University,Linyi 276000,China
    3.CRRC Changchun Railway,Vehicles Co. ,Ltd. ,Changchun 130062,China
  • Received:2023-01-21 Online:2024-11-01 Published:2025-04-24

摘要:

为改善变轨距列车不同轨距线路上的运行性能,采用基于PCA赋权的信噪比方法对悬挂参数进行优化设计。基于SIMPACK建立1 435/1 520 mm变轨距列车的动力学仿真模型,采用参数试验法结合Pareto图筛选出关键悬挂参数,基于最优拉丁超立方采样方法选取200组关键悬挂参数进行仿真试验,对输出的动力学指标进行加权信噪比分析,通过主成分分析对子目标权重进行赋值,得到变轨距列车综合两种轨距下的关键悬挂参数的优化值。对优化结果进行试验验证表明:优化后的车辆在两种轨距线路上的动力学性能均满足标准要求,且具有更好的动力学性能。

关键词: 铁路运输, 变轨距列车, 参数优化, 动力学指标, 最优拉丁超立方, 主成分分析

Abstract:

In order to improve the running performance of variable-gauge trains when working on different gauge lines, a PCA assigned signal-to-noise ratio-based method is used to optimize the suspension parameters. It established the dynamic simulation model of 1 435/1 520 mm high-speed variable-gauge train based on SIMPACK. The key suspension parameters were selected by parameter test method Pareto diagram. Based on the optimal Latin hypercube design method, 200 groups of key suspension parameters were selected for simulation test. The signal-to-noise ratio is used to analyze the dynamic performance. Assigning the weights of various dynamic indicators through principal component analysis, and obtain the optimized values of key suspension parameters for variable-gauge trains under two different gauge combinations. The results of parameter optimization are tested and verified, which show that the dynamic performance of the optimized suspension parameters on the two gauges meets the standard requirements, and the vehicle has better dynamic performance.

Key words: railway transportation, variable-gauge trains, optimize parameter, dynamic index, the optimal Latin hypercube, principal component analysis

中图分类号: 

  • U297.9

图1

轨道车辆系统拓扑结构"

表1

变轨距车辆主要悬挂参数"

部件

名称

悬挂参数

刚度/

(kN·mm-1

阻尼/

(kN·s·m-1

数值符号数值符号

一系

悬挂

纵向10 000KPx30CPx
横向6 000KPy30CPy
垂向1 000KPz30CPz

二系

悬挂

纵向200KSx20CSx
横向200KSy20CSy
垂向335KSz40CSz
抗蛇行减振器阻尼300Cyd
抗侧滚扭杆等效刚度4 150Kat

图2

变轨距车辆动力学仿真模型"

图3

悬挂参数对动力学指标影响的Pareto图"

图4

两种拉丁超立方试验设计示意图"

图5

各项动力学指标结果"

表2

主成分矩阵的特征分析表"

主成分特征值方差贡献率%累计方差贡献率%
PC14.684 07766.915 379 07066.915 379 07
PC21.471 76421.025 194 18087.940 573 25
PC30.421 5766.022 509 13093.963 082 38
PC40.267 8003.825 713 38297.788 795 77
PC50.128 9451.842 077 89599.630 873 66
PC60.022 6520.323 603 40199.954 477 06
PC70.003 1870.045 522 9381.000 000 00

表3

7个目标函数的主成分系数"

目标函数PC1PC2PC3PC4PC5PC6PC7
y10.441 003-0.057 860-0.362 4100.132 0340.295 4320.751 6980.032 657
y20.444 5940.060 2170.077 810-0.091 1100.676 266-0.453 320-0.348 590
y30.383 7830.065 3990.818 817-0.230 360-0.196 5100.293 152-0.018 700
y40.349 0900.445 0590.047 7180.702 023-0.158 470-0.222 9800.331 832
y50.385 442-0.420 560-0.148 340-0.338 300-0.076 160-0.270 1100.677 751
y60.410 927-0.304 010-0.244 7700.089 281-0.585 300-0.144 050-0.554 540
y70.145 8490.722 061-0.328 560-0.553 120-0.208 040-0.009 040-0.009 870

图6

动力学指标的加权信噪比"

图7

优化前后动力学指标对比"

1 谭皓尹, 黄运华, 李芾, 等. 丝绸之路经济带背景下变轨距转向架的发展研究[J]. 机械工程与自动化, 2017(2): 217-219.
Tan Hao-yin, Huang Yun-hua, Li Fu, et al. Gauge-changeable bogie study under background of silk road economic belt[J]. Mechanical Engineering & Automation, 2017(2): 217-219.
2 李典易, 陈勇. 亚欧大陆跨境铁路的轨距问题[J]. 社会科学文摘, 2020(2): 39-41.
Li Dian-yi, Chen Yong. The break-of-gauge problem of cross-border railways on the Eurasian continent[J]. The Journal of International Studies, 2020(2): 39-41.
3 周殿买, 徐彬, 黄志辉, 等. 400 km/h高速动车组变轨距走行系统关键技术研究[J]. 机车电传动, 2020, 2020(2): 23-25.
Zhou Dian-mai, Xu Bin, Huang Zhi-hui, et al. Key technology design of variable gauge running system for 400 km/h high-speed EMU[J]. Electric Drive for Locomotives, 2020(2): 23-25.
4 Usamah R, Kang D, Ha Y D, et al. Structural evaluation of variable gauge railway[J]. Infrastructures, 2020, 5(10): 5100080.
5 Jiang J Z, Matamoros S, Alejandra Z, et al. Passive suspensions incorporating inerters for railway vehicles[J]. Vehicle System Dynamics, 2012, 50(1): 263-276.
6 Yao Y, Li G, Sardahi Y, et al. Stability enhancement of a high-speed train bogie using active mass inertial actuators[J]. Vehicle System Dynamics, 2019, 57(3): 389-407.
7 Qiu Z C, Han S C, Na J, et al. Vertical suspension optimization for a high-speed train with PSO intelligent method[J]. Computational Intelligence and Neuroscience, 2021 (2021): 1526792.
8 Chen M L, He X S, Cao J W, et al. Modeling of vertical vibration system of high speed train and optimization of suspension parameters[C]∥ 3rd International Conference on Control and Robots, Tokyo, Japan, 2020: 26-29.
9 Zou H, Wu Q F, Zou X L. Research on optimization design of suspension parameters of railway vehicle bogies based on surrogate model[J]. Multimedia Tools and Applications, 2022 (2022): s11042022140224.
10 Sun Y, Zhou J S, Gong D, et al. A new vibration absorber design for under-chassis device of a high-speed train[J]. Shock and Vibration, 2017 (2017): 1-8.
11 Chen J, Wu Y J, Zhang L M, et al. Dynamic optimization design of the suspension parameters of car body-mounted equipment via analytical target cascading[J]. Journal of Mechanical Science and Technology, 2020, 34(5): 1957-1969.
12 Liu W L, Yang Y, Wang P P, et al. Metamodel-based robust collaborative optimization for the suspension parameters of rail vehicles[J]. Journal of the Chinese Institute of Engineers, 2019, 42(8): 643-652.
13 姚远, 李广, 梁树林, 等. 基于健壮稳定性的高速列车悬挂参数优化匹配方法[J]. 铁道学报, 2021, 43(8): 35-44.
Yao Yuan, Li Guang, Liang Shu-lin, et al. Optimal matching method for suspension parameters of high-speed train bogie based on robust hunting stability[J]. Journal of the China Railway Society, 2021, 43(8): 35-44.
14 王红兵, 李国芳, 李炳劭, 等. 基于稳健试验设计的高速客车悬挂参数多目标优化[J]. 铁道机车车辆, 2020, 40(2): 25-29.
Wang Hong-bing, Li Guo-fang, Li Bing-shao, et al. Comprehensive optimization of suspension parameters of high-speed passenger trains based on taguchi method[J]. Railway Locomotive and Car, 2020, 40(2): 25-29.
15 赵树恩, 聂小芮, 陈文斌. 基于田口稳健设计的跨座式单轨车辆悬挂系统多参数优化[J]. 重庆交通大学学报: 自然科学版, 2021, 40(12): 136-142.
Zhao Shu-en, Nie Xiao-rui, Chen Wen-bin. Multi-parameter optimization of suspension system of straddle monorail vehicle based on taguchi robust design[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(12): 136-142.
16 王攀攀, 杨岳, 易兵, 等. 面向运行稳定性的高速轨道车辆悬挂参数多目标稳健优化[J]. 铁道科学与工程学报, 2018, 15(12): 3021-3028.
Wang Pan-pan, Yang Yue, Yi Bing, et al. Multi-objective robust optimization of suspension parameters for high-speed rail vehicle[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3021-3028.
17 王婷. 高速客车轴箱悬挂参数稳健优化设计[D]. 长沙: 中南大学交通运输工程学院, 2014.
Wang Ting. Robust optimization design on axlebox suspension parameters of high-speed passenger train[D]. Changsha: School of Traffic & Transportation Engineering, Central South University, 2014.
18 崔利通, 李国栋, 宋春元, 等. 高速动车组悬挂参数优化研究[J]. 铁道学报, 2021, 43(4): 42-50.
Cui Li-tong, Li Guo-dong, Song Chun-yuan, et al. Study on optimization of suspension parameters of high-speed EMU trains[J]. Journal of the China Railway Society, 2021, 43(4): 42-50.
19 金天贺, 刘志明, 任尊松, 等. 高速列车减振器组合阻尼特性效应研究[J]. 华南理工大学学报: 自然科学版, 2018, 46(9): 116-124.
Jin Tian-he, Liu Zhi-ming, Ren Zun-song, et al. Study of combination damping characteristics effect of high-speed train damper[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(9): 116-124.
20 金光, 徐腾养, 徐传波, 等. 高速列车二系横向刚度和横向阻尼参数优化分析[J]. 中国工程机械学报, 2021, 19(5): 384-389.
Jin Guang, Xu Teng-yang, Xu Chuan-bo, et al. Parameters optimization analysis of secondary lateral stiffness and secondary lateral damping of high speed train[J]. Chinese Journal of Construction Machinery, 2021, 19(5): 384-389.
21 缪炳荣, 方向华, 傅秀通. SIMPACK 动力学分析基础教程[M]. 成都: 西南交通大学出版社, 2008.
22 石怀龙, 郭金莹, 王勇. 变轨距高速列车的动力学[J]. 机械工程学报, 2020, 56(20): 98-105.
Shi Huai-long, Guo Jin-ying, Wang-yong, et al. Dynamic performance of high-speed gauge-changeable railway vehicle[J].Journal of Mechanical Engineering, 2020, 56(20): 98-105.
23 庄娇娇. 高速变轨距列车动力学性能优化及半主动控制策略研究[D]. 长春: 吉林大学交通学院, 2019.
Zhuang Jiao-jiao. Research on dynamic performance optimization and semi-active control strategy of high-speed variable-gauge train[D]. Changchun: College of Transportation,Jilin University, 2019.
24 中铁第一勘察设计院集团有限公司. 铁路线路设计规范[M]. 北京: 中国铁道出版社, 2018.
25 . 机车车辆动力学性能评定及试验鉴定规范 [S].
26 盛佳香. 高速变轨距列车可变悬挂系统研究[D]. 长春: 吉林大学交通学院, 2022.
Sheng Jia-xiang. Research on variable suspension system of high-speed variable-gauge train[D]. Changchun: College of Transportation, Jilin University, 2022.
27 张剑. 基于代理模型技术的高速列车性能参数设计及优化[D]. 成都: 西南交通大学机械工程学院, 2015.
Zhang Jian. The high-speed train performance parameter design and optimization based on surrogate model technology[D]. Chengdu: School of Mechanical Engineering, Southwest Jiaotong University, 2015.
[1] 吴飞,王鹏程,杨康. 基于PCA-SSA-XGBoost的车辆驾驶性评估[J]. 吉林大学学报(工学版), 2025, 55(1): 105-115.
[2] 顿国强,吴星澎,纪欣鑫,张福利,纪文义,朱礼贵. 玉米条带摆管式撒肥装置设计及试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2697-2707.
[3] 余萍,赵康,曹洁. 基于优化A-BiLSTM的滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2024, 54(8): 2156-2166.
[4] 李房云,夏容,张怡欣. 考虑电池荷电状态的混合动力汽车复合电源协同控制[J]. 吉林大学学报(工学版), 2024, 54(4): 1114-1119.
[5] 刘玉梅,盛佳香,庄娇娇,陈熔,赵大龙. 高速变轨距转向架结构优化及动力学性能分析与预测[J]. 吉林大学学报(工学版), 2024, 54(2): 453-460.
[6] 宋世军,樊敏. 基于随机森林算法的大数据异常检测模型设计[J]. 吉林大学学报(工学版), 2023, 53(9): 2659-2665.
[7] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[8] 于贵申,陈鑫,武子涛,陈轶雄,张冠宸. AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1338-1344.
[9] 应沛然,曾小清,沈拓,袁腾飞,宋海峰,王奕曾. 基于冗余工序编码的高速列车节能驾驶智能算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3404-3414.
[10] 张勇飞,陈涛. 基于时间序列模糊分割的通信数据分类算法设计[J]. 吉林大学学报(工学版), 2023, 53(11): 3268-3273.
[11] 蒋林,杨立,张文俊,张琼玉,吴艳霞. 在障碍物检测时对斜坡点云的检测处理算法[J]. 吉林大学学报(工学版), 2023, 53(11): 3221-3228.
[12] 顿国强,刘文辉,吴星澎,毛宁,纪文义,马洪岩. 螺旋挤压式精量排肥器的仿真优化及试验[J]. 吉林大学学报(工学版), 2023, 53(10): 3026-3037.
[13] 国强,李明松,周凯. 基于势距图与改进云模型的多模雷达分选[J]. 吉林大学学报(工学版), 2022, 52(8): 1904-1911.
[14] 史瑞杰,戴飞,赵武云,刘小龙,瞿江飞,张锋伟. 丘陵山地胡麻联合收割机作业参数优化与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2746-2755.
[15] 曹振,崔路瑶,雷斌,王婧旖,曹双胜. 城轨列车滚动轴承智能诊断的特征降维与随机森林方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2287-2293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!