吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3558-3567.doi: 10.13229/j.cnki.jdxbgxb.20230076

• 计算机科学与技术 • 上一篇    下一篇

基于改进非洲秃鹫算法的TDOA-AOA定位

肖剑1(),刘经纬1,胡欣2(),齐小刚3   

  1. 1.长安大学 电子与控制工程学院,西安 710054
    2.长安大学 能源与电气工程学院,西安 710054
    3.西安电子科技大学 数学与统计学院,西安 710054
  • 收稿日期:2023-01-29 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 胡欣 E-mail:xiaojian@chd.edu.cn;huxin@chd.edu.cn
  • 作者简介:肖剑(1975-),男,副教授,博士.研究方向:控制工程,检测技术.E-mail:xiaojian@chd.edu.cn
  • 基金资助:
    西安市科技计划项目(22GXFW-0154);陕西省秦创原“科学家+工程师”队伍建设项目(2024QCY-KXJ-161)

TDOA⁃AOA location based on improved african vulture algorithm

Jian XIAO1(),Jing-wei LIU1,Xin HU2(),Xiao-gang QI3   

  1. 1.School of Electronic and Control Engineering,Chang'an University,Xi'an 710054,China
    2.School of Energy and Electrical Engineering,Chang'an University,Xi' an 710054 China
    3.School of Mathematics and Statistics Engineering,Xidian University,Xi' an 710054,China
  • Received:2023-01-29 Online:2024-12-01 Published:2025-01-24
  • Contact: Xin HU E-mail:xiaojian@chd.edu.cn;huxin@chd.edu.cn

摘要:

针对到达时间差定位(Time difference of arrival,TDOA)和到达角定位(Angle of arrival,AOA)联合定位,提出了基于准反射学习机制和并行机制改进的非洲秃鹫定位算法。改进的非洲秃鹫算法在对定位模型最大似然的适应度函数寻优和迭代过程中,引入准反射机制以丰富种群多样性和加快收敛速度,在一定程度上也平衡了探索和开发能力;引入并行机制,通过一个种群的最优个体指导另一种群,加快收敛速度,增强了寻优性能。实验结果看,将改进的非洲秃鹫算法与非洲秃鹫算法(AVOA)、改进的哈里斯鹰算法(IHHO)、混沌麻雀搜索优化算法(CSSOA)、鸽群优化算法(PIO)、疯狂自适应樽海鞘算法(CASSA)进行对比,在基准函数和定位模型的求解上,都表现出了更快的收敛速度、更准确的定位精度和更好的稳定性。

关键词: 信息处理技术, 到达时间差定位, 到达角定位, 非洲秃鹫算法, 准反射学习

Abstract:

For joint localization of time difference of arrival (TDOA) and angle of arrival (AOA), an improved African vulture localization algorithm based on quasi reflective learning mechanism and parallel mechanism was proposed. The improved African vulture introduced a quasi reflection mechanism to enrich population diversity and speed up convergence in the process of searching for the maximum likelihood fitness function of the location model and in the iterative process, which also balanced the exploration and exploitation capabilities to a certain extent; The parallel mechanism was introduced to guide another population through the optimal individual of one population, which speeds up the convergence speed and enhances the optimization performance. From the results, the improved African Vulture algorithm is compared with AVOA, IHHO, CSSOA, PIO and CASSA, and shows faster convergence speed, more accurate positioning accuracy and better stability in solving the benchmark function and positioning model.

Key words: information processing technology, time difference of arrival, angle of arrival, african vultures optimization algorithm, quasi reflection

中图分类号: 

  • TP277

图1

TDOA/AOA定位模型"

图2

PQRAVOA的流程图"

表1

基准函数"

FunctionsDRangefmin
F1=i=1nxi2

100

[-100,100]D

0

F2=i=1nxi-i=1nxi

100

[-10,10]D

0

F3=i=1n(j=1ixj)2

30

[-100,100]D

0

F4=maxi{xi,1in}30[-100,100]D0
F5=-20e(-0.21ni=1nxi2)????????-e(1ni=1ncos(2πxi)+20+e

10

[-32,32]D

0

F6=0.1{sin2(3πxi)?????????+i=1n-1(xi-1)[1+sin2(3πxi+1)]?????????+(xn-1)[1+sin2(2πxn)]}??????????+i=1nu(xi,5,100,4)

100

[-50,50]D

0

图3

基准函数的收敛曲线对比"

表2

基准函数仿真结果"

函数PQRAVOAAVOAIHHOCSSOAPIOCASSA
F1Ave07.763E-12002.556E-2286.673E-122.624E-13
Std01.731E-119001.481E-114.465E-13
F2Ave2.074E-2172.641E-604.058E-1878.177E-1061.479E-88.448E-6
Std05.813E-6001.698E-1052.196E-81.842E-5
F3Ave02.218E-761.937E-2841.039E-1652.045E-129.342E-9
Std04.202E-76002.132E-122.089E-8
F4Ave1.915E-2123.967E-601.953E-1621.309E-1116.588E-75.463E-10
Std08.385E-604.445E-1621.511E-1111.369E-75.712E-10
F5Ave3.801E-91.522E-38.922E-37.711E-57.20213.606
Std3.778E-91.191E-31.429E-28.332E-58.22810.969
F6Ave1.113E-114.541E-84.718E-57.469E-99.601E-32.232E-2
Std1.003E-112.134E-84.652E-51.671E-81.285E-23.323E-2

图4

适应度值与迭代次数的关系"

图5

RMSE与迭代次数的关系"

图6

RMSE与种群规模的关系"

图7

RMSE在不同噪声下的累计分布曲线"

表3

不同距离噪声下的均方根误差对比"

σ(m)RMSE
AVOAPQRAVOACSSOAIHHOCASSAPIO
0.10.040 50.011 90.016 30.066 20.235 30.029 3
0.20.058 70.022 60.025 80.079 20.241 90.042 8
0.30.073 10.035 10.036 90.085 80.247 20.061 6
0.40.083 60.046 70.049 20.093 90.248 30.075 5
0.50.092 20.055 10.061 20.108 70.284 80.092 9
0.60.100 40.064 20.073 20.113 40.299 30.103 4
0.70.111 10.076 50.080 60.123 10.275 40.114 1
0.80.119 10.088 80.097 20.138 50.305 90.127 1
0.90.124 20.099 20.103 50.147 60.301 10.131 7
1.00.131 90.108 50.117 80.158 20.288 10.148 9
1 Wang G, Zhu W, Ansari N. Robust TDOA-based localization for IoT via joint source position and NLOS error estimation[J]. IEEE Internet of Things Journal, 2019, 6(5): 8529-8541.
2 Wang Y, Ho K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524-6535.
3 Wang Y, Ho K C. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings[J]. IEEE Transactions on Wireless Communications, 2017, 17(2): 1242-1254.
4 岳俊升, 程钢, 邓超. 标签高度差的UWB室内定位方法[J]. 导航定位学报, 2019, 7(3): 44-50.
Yue Jun-sheng, Cheng Gang, Deng Chao. UWB indoor positioning method considering difference ofheight[J]. Journal of Navigation and Positioning,2019, 7(3): 44-50.
5 孔维炯, 丁志中, 方福柱. 基于TDOA的高精度无线定位算法分析与实现[J]. 合肥工业大学学报: 自然科学版, 2019, 42(6): 756-762.
Kong Wei-jiong, Ding Zhi-zhong, Fang Fu-zhu. Analisys and realization of high precision radio positioning algorithm based on TDOA[J]. Journal of Hefei University of Technology (Natural Science), 2019,42(6): 756-762.
6 Wang G, Cai S, Li Y M, et al. A bias reduced nonlinear WLS method for TDOA /FDOA based source localization[J]. IEEE Transactions on Vehicular Technology, 2016,65 (10): 8603-8615.
7 赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA 无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336-2343.
Zhao Yong-jun, Zhao Yong-sheng, Zhao Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics & Information Technology,2016,38 (9): 2336-2343.
8 马一鸣, 石志东, 赵康.基于改进哈里斯鹰优化算法的TDOA 定位[J].计算机工程, 2020, 46(12): 179-184.
Ma Yi-ming, Shi Zhi-dong, Zhao Kang. TDOA localization based on improved Harris hawk optimization algorithm[J]. Computer Engineering,2020,46(12):179-184.
9 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报: 工学版,2023, 53(2): 593-600.
Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 593-600.
10 陈涛, 王梦馨, 黄湘松. 基于樽海鞘群算法的无源时差定位[J]. 电子与信息学报, 2018, 40(7): 1591-1597.
Chen Tao, Wang Meng-xin, Huang Xiang-song. Time difference of arrival passive location based on salp swarm algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597.
11 苟平章, 孙梦源, 刘学治,等. 基于天牛须搜索优化的TDOA三维节点定位算法[J].传感器与微系统,2022, 41(10): 141-144.
Gou Ping-zhang, Sun Meng-yuan, Liu Xue-zhi, et al. 3D node location algorithm based on optimization of BAS [J]. Transducer and Microsystem Technologies,2022, 41(10): 141-144.
12 Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95: 51-67.
13 Sm A, Smm B, Al A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
14 Abbasi A, Firouzi B, Sendur P. On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks[J]. Engineering with Computers, 2021, 37(2): 1409-1428.
15 Nadimi-Shahraki M H, Taghian S, Mirjalili S,et al. EWOA-OPF: effective whale optimization algorithm to solve optimal power flow problem[J]. Electronics, 2021, 10(23): No.10232975.
16 Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: No. 113917.
17 Fan Q, Chen Z, Xia Z. A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems[J]. Soft Computing, 2020,24(19): 14825-14843.
18 王静静, 瞿少成, 李科林. 一种基于并行交叉遗传算法的二维不规则排样问题求解[J]. 计算机应用与软件, 2020, 37(7): 188-193.
Wang Jing-jing, Zhai Shao-cheng, Li Ke-lin. A two-dimensional irregular layout problem solving based on parallel cross genetic algorithm[J]. Computer Applications and Software, 2020, 37(7): 188-193.
19 Abdollahzadeh B, Gharehchopogh F S, Mirjalili S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: No.107408.
20 Tizhoosh H R. Opposition-based learning: a new scheme for machine intelligence[C]∥International Conference on International Conference on Computational Intelligence for Modelling, Control & Automation, Vienna, Austria, 2005: 695-701.
21 Rahnamayan S, Tizhoosh H R, Salama M. Quasi-oppositional differential evolution[C]∥2007 IEEE Congress on Evolutionary Computation, Piscataway,USA, 2007: 2229-2236.
22 Ewees A A, Elaziz M A, Houssein E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications,2018,112(Dec.): 156-172.
23 Pan J S, Tian A Q, Chu S C,et al. TDOA location based on pigeon-inspired optimization algorithm in WSNs[C]∥International Conference on Genetic and Evolutionary Computing.Berlin: Springer, 2021: 724-733.
24 张达敏, 陈忠云, 辛梓芸. 基于疯狂自适应的樽海鞘群算法[J]. 控制与决策, 2020, 35(9): 2112-2120.
Zhang Da-min, Chen Zhong-yun, Xin Zi-yun. Algorithm based on crazy self-adaptive salvia group[J]. Control and Decision, 2020, 35(9): 2112-2120.
[1] 段锦,姚安妮,王震,于林韬. 改进的麻雀搜索算法优化无线传感器网络覆盖[J]. 吉林大学学报(工学版), 2024, 54(3): 761-770.
[2] 苏育挺,王骥,赵玮,井佩光. 基于动态图卷积的图像情感分布预测[J]. 吉林大学学报(工学版), 2023, 53(9): 2601-2610.
[3] 陈绵书,于录录,李晓妮,郑宏宇. 基于均匀ORB特征的回环检测算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2666-2675.
[4] 国强,朱国会,李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报(工学版), 2023, 53(2): 593-600.
[5] 李厚杰,王法胜,贺建军,周瑜,李威,窦宇轩. 基于伪样本正则化Faster R⁃CNN的交通标志检测[J]. 吉林大学学报(工学版), 2021, 51(4): 1251-1260.
[6] 蒋华伟,杨震,张鑫,董前林. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181.
[7] 王德兴,吴若有,袁红春,宫鹏,王越. 基于多尺度注意力融合和卷积神经网络的水下图像恢复[J]. 吉林大学学报(工学版), 2021, 51(4): 1396-1404.
[8] 金静,党建武,王阳萍,申东. 融合模糊统计纹理特征的多线索粒子滤波跟踪[J]. 吉林大学学报(工学版), 2021, 51(3): 1111-1120.
[9] 郭继昌,乔珊珊. 基于深度图的水下图像复原[J]. 吉林大学学报(工学版), 2021, 51(2): 677-684.
[10] 刘国华,周文斌. 基于卷积神经网络的脉搏波时频域特征混叠分类[J]. 吉林大学学报(工学版), 2020, 50(5): 1818-1825.
[11] 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777.
[12] 史再峰,李金卓,曹清洁,李慧龙,胡起星. 基于生成对抗网络的低剂量能谱层析成像去噪算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1755-1764.
[13] 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787.
[14] 张薇,韩勇,金铭,乔晓林. 基于托普利兹矩阵集重构的相干信源波达方向估计[J]. 吉林大学学报(工学版), 2020, 50(2): 703-710.
[15] 程艳芬,姚丽娟,袁巧,陈先桥. 水下视频图像清晰化方法[J]. 吉林大学学报(工学版), 2020, 50(2): 668-677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .