吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1592-1600.doi: 10.13229/j.cnki.jdxbgxb.20230145

• 交通运输工程·土木工程 • 上一篇    

基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别

谭国金1(),孔庆雯1,何昕1(),张攀2,杨润超3,朝阳军4,杨忠4   

  1. 1.吉林大学 交通学院,长春 130022
    2.长春市建设工程安全监督站,长春 130012
    3.吉林省公路管理局,长春 130021
    4.吉林省交通规划设计院,长春 130021
  • 收稿日期:2023-02-28 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 何昕 E-mail:tgj@jlu.edu.cn;hexin@jlu.edu.cn
  • 作者简介:谭国金(1981-),男,教授,博士.研究方向:桥梁智能检测与评定.E-mail:tgj@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600604);国家自然科学基金面上项目(51978309);黑龙江省交通运输厅科技项目(2021-1);吉林省交通运输科技计划项目(2021-01-02)

Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm

Guo-jin TAN1(),Qing-wen KONG1,Xin HE1(),Pan ZHANG2,Run-chao YANG3,Yang-jun CHAO4,Zhong YANG4   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.Changchun Construction Project Safety Supervision Station,Changchun 130012,China
    3.Jilin Provincial Highway Administration,Changchun 130021,China
    4.Jilin Traffic Planning and Design Institute,Changchun 130021,China
  • Received:2023-02-28 Online:2023-06-01 Published:2023-07-23
  • Contact: Xin HE E-mail:tgj@jlu.edu.cn;hexin@jlu.edu.cn

摘要:

为了快速、准确地识别出桥梁冲刷损伤的位置和程度,提出了一种基于桥梁结构动力特性和改进粒子群优化算法的桥梁冲刷识别方法。该方法先将桥梁结构动力特性与单位力作用下墩顶静力位移作为桥梁冲刷识别参数;然后,利用多元非线性回归得到冲刷识别参数与不同桥墩冲刷深度之间的定量关联,根据桥梁实测时获取的动力特性值便可识别出桥墩左、右两侧不均匀冲刷深度;最后,对一座简支梁桥进行数值分析,演示了本文基于改进粒子群优化算法的桥梁冲刷识别方法的具体应用步骤。研究结果表明:本文方法可识别出桥梁冲刷位置和冲刷深度,且识别结果具有一定的准确性。在实际工程中,通过常规桥梁检测即可实现桥梁基础冲刷损伤识别,避免了水下作业带来的操作难题,且可快速对桥梁冲刷状态进行准确评估。

关键词: 桥梁工程, 动力特性, 识别方法, 改进粒子群优化算法, 冲刷深度

Abstract:

A bridge scour identification method based on dynamic characteristics of bridge structure and improved particle swarm optimization algorithm was proposed, in order to identify the position and degree of bridge scour damage quickly and accurately. The dynamic characteristics of the bridge structure and the static displacement of the pier top are taken as the scour identification parameters of the bridge in this method, and the quantitative correlation between the scour identification parameters and the scour depth of different piers was obtained by using multiple nonlinear regression. Therefore, the uneven scour depth of the pier can be identified according to the dynamic characteristics obtained during the actual detection of the bridge. Finally, the numerical simulation analysis of a simply-supported beam bridge was carried out, and the concrete application steps of the proposed bridge scour identification method based on the improved particle swarm optimization algorithm were demonstrated. The results show that the proposed method can identify the bridge scour location and scour depth, which has a certain accuracy. In practical engineering, scour damage identification of bridge foundation can be realized by using this method through conventional bridge detection, which avoids operational difficulties brought by underwater operation, and can evaluate the scour state quickly and accurately.

Key words: bridge engineering, dynamic characteristics, identification method, improved particle swarm optimization algorithm, depth of scour

中图分类号: 

  • U446

图1

n跨桥梁示意图"

图2

L-PSO算法流程图"

图3

桥梁构造图(单位: cm)"

图4

桥梁结构数值分析模型"

表1

简支梁桥66组工况数值分析结果"

工况编号h1/mh2/mc2/c1φ2/φ1f/Hz工况编号h1/mh2/mc2/c1φ2/φ1f/Hz
10.000.001.000 0001.000 0003.818 8341.503.001.149 8921.002 7673.406 3
20.000.501.016 7791.000 2703.796 5351.503.501.213 0911.003 8493.332 2
30.001.001.045 3891.000 7583.758 3361.504.001.281 1851.004 9473.257 4
40.001.501.083 4461.001 4263.708 2371.504.501.351 8141.006 0143.185 1
50.002.001.129 8591.002 2423.648 7381.505.001.421 4861.006 9993.118 6
60.002.501.184 1281.003 1833.581 5392.002.001.000 0001.000 0003.485 2
70.003.001.245 8461.004 2183.508 6402.002.501.048 0321.000 9303.421 1
80.003.501.314 3181.005 3173.432 2412.003.001.102 6561.001 9493.351 6
90.004.001.388 0951.006 4343.355 0422.003.501.163 2591.003 0263.278 8
100.004.501.464 6171.007 5213.2803432.004.001.228 5561.004 1163.205 4
110.005.001.540 1031.008 5263.211 5442.004.501.296 2831.005 1773.134 4
120.500.501.000 0001.000 0003.774 3452.005.001.363 0941.006 1533.069 2
130.501.001.028 1381.000 4873.736 3462.502.501.000 0001.000 0003.358 2
140.501.501.065 5661.001 1533.686 4472.503.001.052 1201.001 0173.290 1
150.502.001.111 2131.001 9693.627 1482.503.501.109 9461.002 0893.218 9
160.502.501.164 5871.002 9073.560 3492.504.001.172 2501.003 1753.147 1
170.503.001.225 2861.003 9403.487 8502.504.501.236 8731.004 2273.077 7
180.503.501.292 6291.005 0353.411 9512.505.001.300 6221.005 1973.013 8
190.504.001.365 1881.006 1463.335 1523.003.001.000 0001.000 0003.223 7
200.504.501.440 4471.007 2293.260 9533.003.501.054 9611.001 0693.154 2
210.505.001.514 6881.008 2283.192 5543.004.001.114 1791.002 1513.084 1
221.001.001.000 0001.000 0003.698 6553.004.501.175 6001.003 1983.016 3
231.001.501.036 4041.000 6653.649 1563.005.001.236 1911.004 1622.953 9
241.002.001.080 8021.001 4793.590 4573.503.501.000 0001.000 0003.086 5
251.002.501.132 7151.002 4143.524 2583.504.001.056 1331.001 0793.018 2
261.003.001.191 7531.003 4413.452 5593.504.501.114 3551.002 1212.952 1
271.003.501.257 2521.004 5303.377 3603.505.001.171 7891.003 0802.891 4
281.004.001.327 8261.005 6353.301 4614.004.001.000 0001.000 0002.951 7
291.004.501.401 0251.006 7103.228 0624.004.501.055 1271.001 0412.887 4
301.005.001.473 2341.007 7033.160 4634.005.001.109 5091.001 9962.828 3
311.501.501.000 0001.000 0003.600 3644.504.501.000 0001.000 0002.824 9
321.502.001.042 8381.000 8113.542 3654.505.001.051 5401.000 9532.767 3
331.502.501.092 9281.001 7443.477 0665.005.001.000 0001.000 0002.711 2

表2

回归模型系数计算结果"

系数拟合值系数拟合值
t10.006 197p10.000 004
t20.074 700p2-0.000 010
t3-0.060 807p3-0.000 042
t40.214 000p40.005 620
t50.041 420p50.000 009
t6-2.044 000p60.030 260
t7-0.114 580p70.000 122
t85.578 000p80.975 290

图5

自振频率回归模型预测效果"

图6

桥梁墩顶位置右/左振型比值回归模型预测效果"

图7

不同算法目标函数的收敛结果对比"

表3

回归模型系数计算结果"

算法工况11工况30
适应度收敛次数适应度收敛次数
GWO1.669 7e-5730.001 303 461
PSO0.005 063 5704.440 9e-1692
L-PSO4.440 9e-16512.220 4e-1675

图8

简支梁桥66组样本预测效果图"

表4

回归模型系数计算结果"

工况理论值

L-PSO

预测值

工况理论值

L-PSO

预测值

h1/mh2/mh1/mh2/mh1/mh2/mh1/mh2/m
10.00.00.000.20341.53.01.503.01
20.00.50.010.56351.53.51.503.54
30.01.00.050.92361.54.01.514.04
40.01.50.071.36371.54.51.514.49
50.02.00.071.87381.55.01.524.91
60.02.50.052.39392.02.02.001.83
70.03.00.032.92402.02.52.002.42
80.03.50.003.43412.03.02.003.00
90.04.00.003.92422.03.52.003.54
100.04.50.004.44432.04.02.004.04
110.05.00.004.98442.04.52.014.49
120.50.50.460.59452.05.02.014.88
130.51.00.490.95462.52.52.512.35
140.51.50.501.40472.53.02.502.95
150.52.00.511.91482.53.52.503.53
160.52.50.512.44492.54.02.504.04
170.53.00.502.97502.54.52.504.49
180.53.50.493.50512.55.02.504.87
190.54.00.494.01523.03.03.012.88
200.54.50.494.50533.03.53.003.49
210.55.00.515.00543.04.03.004.02
221.01.00.980.94553.04.53.004.49
231.01.51.001.40563.05.03.004.87
241.02.01.001.92573.53.53.513.42
251.02.51.012.47583.54.03.503.99
261.03.01.003.01593.54.53.504.49
271.03.51.003.53603.55.03.504.89
281.04.01.004.03614.04.04.013.94
291.04.51.014.50624.04.54.014.47
301.05.01.024.96634.05.04.004.89
311.51.51.501.36644.54.54.514.43
321.52.01.501.90654.55.04.504.89
331.52.51.502.46665.05.05.014.87
1 熊文, 魏乐永, 张学峰, 等. 大跨度缆索支承桥梁基础冲刷动力识别方法[J]. 哈尔滨工业大学学报, 2019, 51(3): 92-98.
Xiong Wen, Wei Le-yong, Zhang Xue-feng, et al. Dynamic-based bridge scour identification of super-span cable-supported bridges[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 92-98.
2 Lu J Y, Shi Z Z, Hong J H, et al. Temporal variation of scour depth at nonuniform cylindrical piers[J]. Journal of Hydraulic Engineering, 2011, 137(1): 45-56.
3 Bao T, Liu Z, Bird K. Influence of soil characteristics on natural frequency-based bridge scour detection[J]. Journal of Sound and Vibration, 2019, 446(1): 195-210.
4 张佰战, 李付军. 桥墩局部冲刷计算研究[J]. 中国铁道科学, 2004, 25(2): 48-51.
Zhang Bai-zhan, Li Fu-jun. Bridge pier local scour calculation[J]. China Railway Science, 2004, 25(2): 48-51.
5 詹义正, 王军, 谈广鸣, 等. 桥墩局部冲刷的试验研究[J]. 武汉大学学报, 2006, 39(6): 3-4.
Zhan Yi-zheng, Wang Jun, Tan Guang-ming, et al. Experimental study on bridge pier local scour[J]. Engineering Journal of Wuhan University, 2006, 39(6): 3-4.
6 Hong J H, Guo W D, Chiew Y M, et al. A new practical method to simulate flood-induced bridge pier scour—a case study of mingchu bridge piers on the cho-shui river[J]. Water, 2016, 8(6): 238.
7 Deng L, Cai C S. Bridge scour: prediction, modeling, monitoring and countermeasures-review[J]. Practice Periodical on Structural Design & Construction, 2010, 15(2): 125-134.
8 Zounemat-Kermani A, Beheshti A, Ataie-Ashtiani B. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system[J]. Applied Soft Computing, 2009, 9(2): 746-755.
9 熊文, 张愉, 李飞泉, 等. 基于时频分析与神经网络的桥梁冲刷动力评估[J]. 天津大学学报:自然科学与工程技术版, 2020, 53(4): 397-404.
Xiong Wen, Zhang Yu, Li Fei-quan, et al. Dynamic assessment of bridge scour based on time-frequency analysis and neural network[J]. Journal of Tianjin University(Science and Technology), 2020, 53(4): 397-404.
10 张效忠, 孙延华, 孙国民. 基于支持向量机的桥梁冲刷深度识别方法研究[J]. 水利与建筑工程学报, 2016, 14(3): 206-210.
Zhang Xiao-zhong, Sun Yan-hua, Sun Guo-min. Identification method of scour depth for bridge based on ERA and SVM[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(3): 206-210.
11 Ju S H. Determination of scoured bridge natural frequencies with soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2013, 55: 247-254.
12 Kong X, Cai C S. Scour effect on bridge and vehicle responses under bridge-vehicle-wave interaction[J]. Journal of Bridge Engineering, 2016, 21(4): No.04015083.
13 熊文, 邹晨, 叶见曙. 基于动力特性识别的桥墩冲刷状态分析[J]. 中国公路学报, 2017, 30(5): 89-96.
Xiong Wen, Zou Chen, Ye Jian-shu. Condition assessment of bridge scour by tracing dynamic performances of bridges[J]. China Journal of Highway and Transport, 2017, 30(5): 89-96.
14 于繁华, 刘寒冰. 基于支持向量机和粒子群算法的结构损伤识别[J]. 吉林大学学报: 工学版, 2008, 38(2): 434-439.
Yu Fan-hua, Liu Han-bing. Structural damage identification by support vector machine and particle swarm algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(2): 434-439.
15 王学武, 严益鑫, 丁冬雁, 等. 基于Lévy-PSO算法的焊接机器人避障路径规划[J]. 上海交通大学学报, 2016, 50(10): 1517-1520.
Wang Xue-wu, Yan Yi-xin, Ding Dong-yan, et al. Collision free path planning for welding robot based on Lévy-PSO[J]. Journal of Shanghai Jiaotong University, 2016, 50(10): 1517-1520.
16 孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J]. 电子测量技术, 2021, 44(20): 82-87.
Meng Xian-meng, Cai Cui-cui. Whale optimization algorithm based on elite reverse learning and Lévy flight[J]. Electronic Measurement Technology, 2021, 44(20): 82-87.
17 API. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design[M]. 20th ed. Washington DC: API, 2000.
18 Meidani K, Mirjalili S, Barati F A, et al. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[1] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[2] 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380.
[3] 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111.
[4] 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495.
[5] 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816.
[6] 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873.
[7] 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652.
[8] 商拥辉,徐林荣,刘维正,蔡雨. 重载铁路改良土和A组填料过渡段的动力特性[J]. 吉林大学学报(工学版), 2021, 51(6): 2128-2136.
[9] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[10] 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755.
[11] 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762.
[12] 高凯,刘纲. 全局临界强度分枝-约界法的有效强度改进[J]. 吉林大学学报(工学版), 2021, 51(2): 597-603.
[13] 宫亚峰,宋加祥,谭国金,毕海鹏,刘洋,单承新. 多车桥梁动态称重算法[J]. 吉林大学学报(工学版), 2021, 51(2): 583-596.
[14] 孔庆雯,谭国金,王龙林,王勇,魏志刚,刘寒冰. 基于有限元方法的裂缝箱梁桥自振特性分析[J]. 吉林大学学报(工学版), 2021, 51(1): 225-232.
[15] 陈华,陈耀嘉,谢斌,王鹏凯,邓朗妮. CFRP筋粘结式锚固体系界面失效演化机制及粘结强度计算[J]. 吉林大学学报(工学版), 2020, 50(5): 1698-1708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!