吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 245-255.doi: 10.13229/j.cnki.jdxbgxb.20230253

• 交通运输工程·土木工程 • 上一篇    

黏土-混凝土组合体强度及全过程统计损伤模型

李怀鑫1(),晏长根1(),林斌2,石玉玲3   

  1. 1.长安大学 公路学院,西安 710064
    2.安徽理工大学 土木建筑学院,安徽 淮南 232001
    3.长安大学 地质工程与测绘学院,西安 710054
  • 收稿日期:2023-02-23 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 晏长根 E-mail:lihuaixin520@163.com;yanchanggen@163.com
  • 作者简介:李怀鑫(1995-),男,博士研究生.研究方向:交通岩土工程.E-mail: lihuaixin520@163.com
  • 基金资助:
    国家自然科学基金项目(42077265);甘肃省交通运输厅科技项目(2021-19)

Strength and statistical damage model in whole process of clay-concrete combined body

Huai-xin LI1(),Chang-gen YAN1(),Bin LIN2,Yu-ling SHI3   

  1. 1.School of Highway,Chang 'an University,Xi'an 710064,China
    2.School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,China
    3.School of Geological Engineering and Geomatics,Chang'an University,Xi'an 710054,China
  • Received:2023-02-23 Online:2025-01-01 Published:2025-03-28
  • Contact: Chang-gen YAN E-mail:lihuaixin520@163.com;yanchanggen@163.com

摘要:

为研究不同影响因素下小倾角(0°<θ<30°)接触面对桩-土复合结构强度特性的影响,通过TSZ-2全自动三轴仪进行变倾角组合体三轴不固结不排水试验,探讨了黏土-混凝土组合体在不同围压和含水率条件下的抗剪强度及破坏机理,并根据小倾角组合体试样的剪切特性推导出全过程统计损伤模型。研究结果表明:当组合体试样接触面倾角为0°<θ<30°时,且土样含水率为17%时,适当增大接触面倾角可提升组合体强度,而随着含水率的提高,组合体倾角越大,组合体强度越小;小倾角组合体试样三轴加载过程中的变形可分为接触面滑移阶段、试样弹性压缩与接触面剪切耦合阶段、土样弹塑性剪切阶段。变倾角组合体接触面倾角越大,初始损伤值越大,其总损伤值随应变的增加而增加,且总损伤值也受围压和含水率影响;将试验数据和模型理论值进行对比,结果表明:两者拟合度较为一致,验证了本文模型的准确性和合理性。

关键词: 交通工程, 变倾角组合体, 三轴剪切试验, 剪切机制, 变形特性, 统计损伤理论

Abstract:

In order to study the influence of small dip angle(0°<θ<30°) contact surface on the strength characteristics of pile-soil composite structure under different influencing factors, the unconsolidated undrained triaxial test on clay-concrete assembled specimens of variable inclination was carried out by TSZ-2 fully automatic triaxial instrument, and the shear strength and failure mechanism of the clay-concrete combined body under different confining pressures and moisture content were discussed. Finally, according to the shear characteristics of the small inclination clay-concrete combined body, the statistical damage model of the small-angle clay-concrete composite was deduced in the whole process. The results show that when the interface inclination of the clay-concrete combined body is 0°<θ<30° and the water content of the soil is 17%, increasing the interface inclination angle of the clay-concrete combined body can improve the shear strength, and as the water content gradually increases, the larger the interface inclination angle of the clay-concrete combined body, the smaller the shear strength of the clay-concrete combined body. The deformations during triaxial loading of the small-angle combined body can be divided into contact surface slip phase, specimen elastic compression and contact surface shear coupling phase, soil sample elastoplastic shear phase. The larger the inclination of the clay-concrete combined body, the bigger the initial damage value under the same conditions, besides, its total damage value increases with the increase of axial strain, and the initial damage value is also affected by the surrounding pressure and water content. Finally, the experimental data and theoretical values of the model are compared, and the overall fit is consistent, which verifies the accuracy and reasonableness of the model.

Key words: traffic engineering, clay-concrete combined body of variable inclination, triaxial shear test, shear mechanism, deformation properties, statistical damage theory

中图分类号: 

  • TU443

表1

土体主要物理指标"

深度

/m

液限

/%

塑限

/%

最优含

水率/%

最优干密度

/(g?cm-3

塑性指数/%
2~541.020.921.861.9820.1

图1

试验加载试样示意图"

表2

试验方案设计"

倾角θ/(°)tanθi含水率w/%围压σ3/kPa
θ0017100、200、300
22100、200、300
27100、200、300
θ10.2517100、200、300
22100、200、300
27100、200、300
θ20.517100、200、300
22100、200、300
27100、200、300

图2

强度曲线特征分析"

图3

不同影响因素下的应力-应变曲线"

图4

不同含水率引起的轴向应力增量"

表3

不同影响因素下的变倾角组合体力学参数"

接触面

倾角

围压σ3/

kPa

w=17%w=22%w=27%
(σ1-σ3)'/kPa弹性模量E/kPa(σ1-σ3)'/kPa弹性模量E/kPa(σ1-σ3)'/kPa弹性模量E/kPa
θ0100351.794.71240.287.07140.763.49
200420.3112.36311.7107.60157.973.00
300480.8129.82355.0119.78168.781.16
θ1100379.879.96246.877.83102.535.16
200509.2114.41342.2110.81107.451.28
300636.8145.11445.6138.66119.955.33
θ2100381.597.46239.777.26109.221.41
200491.2109.51298.486.94135.229.89
300600.6152.13361.6110.34186.042.39

图5

变倾角组合体土样破坏机理分析"

图6

小倾角组合体变形过程示意图"

表4

相关拟合参数值"

围压σ3/

kPa

倾角θ0/(°)倾角θ1/(°)倾角θ2 / (°)
参数C参数D相关系数R2参数C参数D相关系数R2参数C参数D相关系数R2
1001.168 4-2.843 50.982 41.515 8-4.095 90.930 71.056 6-2.723 70.961 1
2001.152 1-2.889 30.987 21.186 9-3.307 40.944 11.772 6-4.487 40.985 6
3001.125 0-2.886 20.980 21.283 3-3.473 50.979 41.272-3.231 10.991 3

图7

拟合参数对损伤模型曲线的影响"

图8

不同参数对总损伤因子的影响"

图9

理论曲线与试验数据比较"

1 Potyondy J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353.
2 石熊, 张家生, 刘蓓, 等. 红黏土与混凝土接触面剪切特性试验研究[J]. 中南大学学报:自然科学版, 2015,46(5): 1826-1831.
Shi Xiong, Zhang Jia-sheng, Liu Bei, et al. Experiential research on shearing properties of interface between red clay and concrete[J]. Journal of Central South University(Science and Technology), 2015, 46(5): 1826-1831.
3 高登辉, 邢义川, 郭敏霞, 等.非饱和重塑黄土-混凝土接触面修正双曲线模型[J]. 吉林大学学报:工学版, 2020, 50(1): 156-164.
Gao Deng-hui, Xing Yi-chuan, Guo Min-xia, et al. Modified hyperbola model of interface between unsaturated remolded loess and concrete[J]. Journal of Jilin University(Engineering and Technology Edition),2020, 50(1):156-164.
4 徐方, 陈乐, 赵春彦, 等. 黏土-水泥土接触面剪切特性试验研究[J]. 工程科学与技术, 2021, 53(2): 110-117.
Xu Fang, Chen Le, Zhao Chun-yan, et al. Experimental study on the interface shear behavior of clay and cement soil[J]. Advanced Engineering Sciences, 2021, 53(2): 110-117.
5 成 浩, 曾国东,周敏,等.考虑粗糙度影响的黏土–混凝土接触面峰值剪切强度模型研究[J]. 工程科学与技术, 2021, 53(4): 168-177.
Cheng Hao, Zeng Guo-dong, Zhou Min, et al. Peak shear strength model for clay-concrete interface considering Roughness[J]. Advanced Engineering Sciences, 2021, 53(4): 168-177.
6 Boulon M, Nova R. Modeling of soil structure interface behavior: a comparison between elastoplastic and rate-type laws[J]. Computers and Geotechnics, 1990, 17(9): 21-46.
7 殷宗泽, 朱 泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 10(3): 14-22.
Yin Zong-ze, Zhu Hong, Xu Guo-hua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 10(3): 14-22.
8 栾茂田, 武亚军. 土与结构间接触面的非线性弹性-理想塑性模型及其应用[J]. 岩土力学, 2004, 25(4): 507-513.
Luan Mao-tian, Wu Ya-jun. A nonlinear elasto-perfectly plastic model of interface element for soil-structure interaction and its applications[J]. Rock and Soil Mechanics, 2004, 25(4): 507-513.
9 Desai C S, Zaman M M, Lightner J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1):19-43.
10 杨林德, 刘齐建. 土-结构物接触面统计损伤本构模型[J]. 地下空间与工程学报, 2006, 2(1): 79-83.
Yang Lin-de, Liu Qi-jian.Research on statistical damage model for soil structure interface[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(1): 79-83.
11 李赛, 汪优, 秦志浩, 等.基于统计损伤本构模型的改进接触面模型研究[J]. 铁道科学与工程学报, 2016, 13(7):1247-1252.
Li Sai, Wang You, Qin Zhi-hao, et al.Research on improved contact surface constitutive model based on statistical damage constitutive model [J]. Journal of Railway Science and Engineering,2016, 13(7): 1247-1252.
12 汪优, 任加琳, 李赛, 等. 土-结构接触面剪切全过程本构关系研究[J]. 湖南大学学报:自然科学版, 2021, 48(3): 144-152.
Wang You, Ren Jia-lin, Li Sai, et al. Study on shear constitutive relation of soil–structure interface in whole process[J]. Journal of Hunan University (Natural Sciences), 2021, 48(3):144-152.
13 徐卫亚, 韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报, 2002, 21(6): 787-791.
Xu Wei-ya, Wei Li-de. Study on statistical damage constitutive model of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 787-791.
14 Li C D, Liu X W, Liu Q T, et al. Influence of isosceles trapezoid cross-section on the reinforcement effect of stabilizing piles[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2670-2676.
15 文兴, 裴向军, 刘云鹏. 特殊截面抗滑桩受力特征与土拱效应分析[J]. 工程地质学报,2013,21(5): 797-803.
Wen Xing, Pei Xiang-jun, Liu Yun-peng. Stress characteristics and soil arch effect analysis of anti-sliding piles with special cross-section[J]. Journal of Engineering Geology, 2013, 21(5): 797-803.
16 何爽, 胡向东. 管幕冻结法钢管-冻土接触面剪切试验研究[J]. 隧道建设:中英文, 2019, 39(11): 1864-1870.
He Shuang, Hu Xiang-dong. Shear test of steel pipe frozen soil interface in freeze-sealing pipe roof method[J]. Tunnel Construction, 2019, 39(11): 1864-1870.
17 李怀鑫,晏长根,林斌,等. 桩-土界面倾角和含水率对抗滑桩的阻滑效应分析[J]. 煤田地质与勘探,2023,51(5):123-132.
Li Huai-xin, Yan Chang-gen, Lin Bin,et al. Slip resistance effect of pile-soil interface inclination angle and moisture content on the anti-sliding pile[J]. Coal Geology & Exploration, 2023,51(5):123-132.
18 .土工试验方法标准 [S].
19 苏新斌, 廖晨聪, 刘世奥, 等. 基于预制滑动面的饱和黏土-结构物界面强度特性三轴试验研究[J]. 岩土力学, 2022, 43(10):2852-2860.
Su Xin-bin, Liao Chen-cong, Liu Shi-ao, et al. Triaxial test for strength characteristics of saturated clay-structure interface based on prefabricated sliding surface[J]. Rock and Soil Mechanics, 2022, 43(10):2852-2860.
20 樊玉峰, 肖晓春, 徐军, 等. 煤高度对组合岩煤力学性质及冲击倾向性的影响[J]. 煤炭学报,2020,45():649-659.
Fan Yu-feng, Xiao Xiao-chun, Xu Jun, et al. Mechanical properties of coal rock combinations and evaluation of impact tendency considering effects of the height portion of coal[J]. Journal of China coal society,2020,45(Sup.2):649-659.
21 王惠敏, 张云, 鄢丽芬. 粘性土试样高度对抗拉强度的影响[J]. 水文地质工程地质, 2012,39(1):68-71.
Wang Hui-min, Zhang Yun, Yan Li-fen. Effect of specimen depth on the tensile strength of cohesive soils[J]. Hydrogeology & Engineering Geology, 2012, 39(1):68-71.
22 Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(3): 233-245.
23 张慧梅, 陈敏, 孟祥振, 等. 不同倾角节理岩体损伤模型及力学特性[J]. 哈尔滨工程大学学报, 2022,43(6): 801-808.
Zhang Hui-mei, Chen Min, Meng Xiang-zhen, et al. Damage model and mechanical characteristics of jointed rock mass with different joint dip angles[J]. Journal of Harbin Engineering University, 2022,43(6):801-808.
24 Li C. A method for graphically presenting the deformation modulus of jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2001,34(1): 67-75.
[1] 姚荣涵,祁文彦,胡宏宇,杜筱婧,乔延峰,王立冰. 考虑公交-合乘车道的多车道元胞自动机模型[J]. 吉林大学学报(工学版), 2025, 55(1): 162-174.
[2] 周荣贵,高沛,李雨璇,周建. 基于轨迹数据的高速公路小客车异常驾驶行为[J]. 吉林大学学报(工学版), 2024, 54(9): 2581-2587.
[3] 许清津,付锐,郭应时,吴付威. 载货汽车弯道侧翻路侧预测方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1302-1310.
[4] 蒲云,徐银,刘海旭,谭一帆. 考虑多车影响的智能网联车跟驰模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1285-1292.
[5] 马庆禄,闫浩,聂振宇,李杨梅. 匝道合流区智能网联车辆协同控制方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1332-1346.
[6] 曹倩,李志慧,陶鹏飞,李海涛,马永建. 面向交通事故检测及预防的异质传感器布设方法[J]. 吉林大学学报(工学版), 2024, 54(4): 969-978.
[7] 张鑫,胡启洲,何君,吴啸宇. 考虑交通梗塞的合流区交通状况诊断[J]. 吉林大学学报(工学版), 2024, 54(2): 478-484.
[8] 张卫华,刘嘉茗,解立鹏,丁恒. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2024, 54(2): 469-477.
[9] 温惠英,何梓琦,李秋灵,赵胜. 高速公路货车换道冲突预测及其影响因素分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2827-2836.
[10] 潘义勇,吴静婷,缪炫烨. 老年驾驶员事故严重程度影响因素时间不稳定性分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2819-2826.
[11] 杜筱婧,姚荣涵. 智能网联公交车出站强制换道的演化博弈机制[J]. 吉林大学学报(工学版), 2024, 54(1): 124-135.
[12] 岳昊,张琦悦,杨子玉,任孟杰,张旭. 拥堵空间排队的静态交通流分配迭代加权算法[J]. 吉林大学学报(工学版), 2024, 54(1): 136-145.
[13] 马壮林,崔姗姗,胡大伟,王晋. 限行政策下传统小汽车出行者出行方式选择[J]. 吉林大学学报(工学版), 2023, 53(7): 1981-1993.
[14] 张雅丽,付锐,袁伟,郭应时. 考虑能耗的进出站驾驶风格分类及识别模型[J]. 吉林大学学报(工学版), 2023, 53(7): 2029-2042.
[15] 尹超英,陆颖,邵春福,马健霄,许得杰. 考虑空间自相关的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1994-2000.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!