吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 755-770.doi: 10.13229/j.cnki.jdxbgxb.20231163

• 综述 •    下一篇

异构机密计算综述

徐涛1,2(),孔帅迪3,刘才华2,3(),李时4   

  1. 1.中国民航大学 科技创新研究院,天津 300300
    2.中国民航大学 民航智慧机场理论与系统重点实验室,天津 300300
    3.中国民航大学计算机科学与技术学院,天津 300300
    4.南开大学 网络安全学院,天津 300300
  • 收稿日期:2023-10-27 出版日期:2025-03-01 发布日期:2025-05-20
  • 通讯作者: 刘才华 E-mail:txu@cauc.edu.cn;chliu@cauc.edu.cn
  • 作者简介:徐涛(1962-),男,教授,博士.研究方向:民航信息系统与安全、民航智能信息处理.E-mail:txu@cauc.edu.cn
  • 基金资助:
    国家自然科学基金民航联合基金重点项目(2333206);天津市教委科研计划项目(2021KJ037)

Overview of heterogeneous confidential computing

Tao XU1,2(),Shuai-di KONG3,Cai-hua LIU2,3(),Shi LI4   

  1. 1.Institute of Scientific and Technological Innovation,Civil Aviation University of China,Tianjin 300300,China
    2.Key Laboratory of Civil Aviation Smart Airport Theory and System,Civil Aviation University of China,Tianjin 300300,China
    3.School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China
    4.School of Cyberspace Security,Nankai University,Tianjin 300300,China
  • Received:2023-10-27 Online:2025-03-01 Published:2025-05-20
  • Contact: Cai-hua LIU E-mail:txu@cauc.edu.cn;chliu@cauc.edu.cn

摘要:

机密计算是解决数据安全和隐私问题的一个有效方法,然而,随着计算设备的日趋多样化和异构化,传统机密计算在多样化的异构设备上实现极其复杂和困难,如何实现异构机密计算已成为当前的一个研究热点。本文以机密计算在异构设备上的实现技术为主线,对异构机密计算进行了全面分析评述。首先,给出了异构机密计算的概念和挑战;其次,讨论了异构机密计算主流技术中的软件边界扩展技术和混合边界扩展技术,并对当前异构机密计算研究中的评估分析方法和标准进行了概括总结;最后,指出了异构机密计算领域的未来研究方向。

关键词: 计算机应用, 机密计算, 异构, 边界扩展

Abstract:

Confidential computing is an effective method for addressing data security and privacy issues. However, with the increasing diversification and heterogeneity of computing devices, the implementation of traditional confidential computing on diverse heterogeneous devices becomes extremely complex and challenging. How to achieve heterogeneous confidential computing has become a current research hotspot. Based on the implementation technology of confidential computing on heterogeneous devices, a comprehensive analysis and evaluation of heterogeneous confidential computing were conducted. Firstly, the concept and challenges of heterogeneous confidential computing are introduced. Secondly, the software boundary expansion techniques and hybrid boundary expansion techniques in mainstream heterogeneous confidential computing technologies are discussed. The article also summarizes the evaluation analysis methods and standards in current heterogeneous confidential computing research. Finally, we points out the future research directions in the field of heterogeneous confidential computing.

Key words: computer applications, confidential computing, heterogeneous, boundary expansion

中图分类号: 

  • TP391

图1

异构机密计算发展脉络"

图2

异构机密计算示例图"

图3

TEE示例"

图4

非对称加密示意图"

图5

访问控制列表控制访问资源"

表1

软件边界扩展方法及其适用场景"

方法安全机制扩展依赖性性能开支适用场景
SSF利用编译工具和硬件指令实现隔离依赖特定的编译器工具和硬件指令较小多租户的云计算和数据中心
BYOTEE利用FPGA的可重编程特性实现隔离依赖FPGA取决于配置的复杂性高度定制的安全解决方案
TEEOD在FPGA上即时实例化安全处理器创建Enclave依赖FPGA取决于FPGA的资源和配置动态或按需的安全应用
SGX-FPGA建立CPU与FPGA之间的信任关系和双向数据加密依赖FPGA初始化时间较长,两次加密的性能开支大CPU和FPGA的异构系统,
ShEF添加Shield实现可信I/O,利用安全启动构建信任根依赖FPGA取决于加密算法的选择有关云服务提供商
HIX分离操作系统驱动程序、扩展SGX、Lockdown机制依赖MMU和修改PCIe root complex较小跨GPU和CPU的计算环境
BASTION-SGX利用SGX机制和蓝牙固件的修改实现可信I/O通信依赖特定的SGX硬件和修改后的蓝牙固件取决于加密解密,但具体数据未给出物联网设备
SGXIO利用可信Hypervisor为SGX应用提供可信IO依赖于设备虚拟化对GPU有较高开支通用SGX环境
HISA利用安全监视器实现请求调用和数据交互依赖FPGA较小CPU-FPGA系统

图6

ShEF数据流程"

表2

混合边界扩展方法及其适用场景"

方法安全机制扩展依赖性性能开支适用场景
Cure寄存器、扩展总线协议、访问控制列表软件和硬件的修改较小高性能计算
VirTEE添加SM和EM以管理内存与Cure一致较Cure增加需要实时迁移的应用
KeystoneRISC-V物理内存保护和缓存分区依赖RISC-V平台由分区带来的性能开支RISC-V平台应用
HETEE通过PCIe控制资源需要专门的防篡改机箱较小定制化数据中心
Graviton修改GPU外围硬件需要修改GPU外围硬件17%~33%性能开销GPU上的安全任务
Sanctum微小硬件扩展,代替SGX机制的软件栈硬件修改较小较小需要高级别安全的应用

表3

常见攻击向量和安全假设"

攻击向量物理攻击需要更改固件/驱动/硬件TEE正常部署硬件可信攻击者具有系统的最高权限侧信道攻击DDoS攻击TCB大小
HETEE----
BASTION-SGX-----
BYOTEE----
Cure---
HIX----
VirTEE----
ShEF-----
HISA------
SGX-FPGA-----
Spons & Shield------
Gravtion-----
1 刘衍珩, 韩家伟, 孙鑫, 等. 基于量子密钥和云服务的身份加密方案[J]. 吉林大学学报:工学版, 2018,48(2): 551-557.
Liu Yan-heng, Han Jia-wei, Sun Xin, et al. Identity-based encryption scheme based on cloud and quantum keys[J].Journal of Jilin University(Engineering and Technology Edition), 2018,48(2): 551-557.
2 Davis T A, Wong M L M, Paterson N M. The data security governance conundrum: practical solutions and best practices for the boardroom and the C-suite[J]. Columbia Business Law Review, 2015,25(6): 613.
3 Liu V, Musen M A, Chou T. Data breaches of protected health information in the United States[J]. Jama, 2015, 313(14): 1471-1473.
4 方朝剑, 胡新荣. 基于模糊近似度的隐私敏感数据过滤算法[J]. 吉林大学学报: 工学版, 2023, 53(4): 1174-1180.
Fang Chao-jian, Hu Xin-rong.Privacy-sensitive data filtering algorithm based on fuzzy approximation[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(4):1174-1180.
5 Cachin C, Keidar I, Shraer A. Trusting the cloud[J]. Acm Sigact News, 2009, 40(2): 81-86.
6 Mofrad S, Zhang F, Lu S, et al. A comparison study of intel SGX and AMD memory encryption technology[C]∥Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy, Los Angeles California, 2018: 1-8.
7 Li Z, Yu H, Zhou T, et al. Byzantine resistant secure blockchained federated learning at the edge[J]. IEEE Network, 2021, 35(4): 295-301.
8 Choquette J, Gandhi W. Nvidia A100 GPU: performance & innovation for gpu computing[C]∥2020 IEEE Hot Chips 32 Symposium, Palo Alto,CA, USA, 2020: 1-43.
9 Ganusov I K, Iyer M A, Cheng N, et al. Agilex™ generation of Intel ® FPGAs[C]∥2020 IEEE Hot Chips 32 Symposium (HCS), Palo Alto, CA, USA, 2020: 1-26.
10 Jouppi N P, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit[C]∥Proceedings of the 44th Annual International Symposium on Computer Architecture, Toronto, ON, Canada, 2017: 1-12.
11 Horowitz M.1.1 Computing's energy problem (and what we can do about it)[C]∥2014 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2014: 10-14.
12 Choquette J. NVIDIA Hopper H100 GPU: scaling performance[J]. IEEE Micro, 2023, 43(3): 9-17.
13 NVIDIA H 100 tensor core GPU[EB/OL]. [2023-09-25].
14 Chen Y T, Cong J, Fang Z,et al.When spark meets FPGAs: a case study for next-generation DNA sequencing acceleration[C]∥Usenix Conference on Hot Topics in Cloud Computing, Washington, DC, USA, 2016: 64-70.
15 Choi Y K, Cong J, Fang Z,et al.A quantitative analysis on microarchitectures of modern CPU-FPGA platforms[C]∥Design Automation Conference, Austin, USA,2016:1-6.
16 El-Ghazawi T, El-Araby E, Huang M, et al. The promise of high-performance reconfigurable computing[J]. Computer, 2008, 41(2): 69-76.
17 Huang M, Wu D, Yu C H, et al. Programming and runtime support to blaze FPGA accelerator deployment at datacenter scale[C]∥Proceedings of the Sev⁃ enth ACM Symposium on Cloud Computing, Haikou, China,2016: 456-469.
18 Lee D, Kohlbrenner D, Shinde S, et al. Keystone: An open framework for architecting trusted execution environments[C]∥Proceedings of the 5th European Conference on Computer Systems, Heraklion,Greece, 2020: 1-16.
19 Feng E H, Lu X, Du D, et al. Scalable memory protection in the PENGLAI enclave[J/OL].[2023-09-25].
20 Costan V, Lebedev I, Devadas S. Sanctum: minimal hardware extensions for strong software isolation[C]∥25th USENIX Security Symposium, Vancouver, BC, Canada,2016: 857-874.
21 Bahmani R, Brasser F, Dessouky G, et al.CURE: a security architecture with CUstomizable and resilient Enclaves[C]∥30th USENIX Security Symposium, Vancouver, Canada 2021: 1073-1090.
22 Ferraiuolo A, Baumann A, Hawblitzel C, et al. Komodo: using verification to disentangle secure-Enclave hardware from software[C]∥Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 2017: 287-305.
23 Costan V, Devadas S. Intel SGX explained[J]. Cryptology ePrint Archive, 2016(86): 1-118.
24 Thapa C, Camtepe S. Precision health data: requirements, challenges and existing techniques for data security and privacy[J]. Computers in Biology and Medicine, 2021, 129: No.104130.
25 Chakrabarti S, Knauth T, Kuvaiskii D, et al. Trusted Execution Environment with Intel SGX[M].New York: Academic Press, 2020: 161-190.
26 Li M, Zhang Y, Wang H, et al. TLB poisoning attacks on AMD secure encrypted virtualization[C]∥Annual Computer Security Applications Conference, New York, NY, USA, 2021: 609-619.
27 王文宇. 现代密码技术发展及在数据安全中的应用[J].计算机安全, 2012(2): 36-39.
Wang Wen-yu. The development of contemporary cryptography technology and application in data security[J]. Computer Security, 2012(2): 36-39.
28 Shi S, He D, Li L, et al. Applications of blockchain in ensuring the security and privacy of electronic health record systems: a survey[J]. Computers & Security, 2020, 97: No.101966.
29 Sartakov V A, O'Keeffe D, Eyers D, et al. Spons & Shields: practical isolation for trusted execution[C]∥Proceedings of the 17th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, New York, NY,USA, 2021: 186-200.
30 Wahbe R, Lucco S, Anderson T E, et al. Efficient software-based fault isolation[C]∥Proceedings of the fourteenth ACM Symposium on Operating Systems Principles, Asheville, North Carolina, USA, 1993: 203-216.
31 Abadi M, Budiu M, Erlingsson U, et al. Control-flow integrity principles, implementations, and applications[J]. ACM Transactions on Information and System Security, 2009, 13(1): 1-40.
32 Oleksenko O, Kuvaiskii D, Bhatotia P, et al. Intel mpx explained: A cross-layer analysis of the intel mpx system stack[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2018, 2(2): 1-30.
33 Armanuzzaman M, Sadeghi A R, Zhao Z. Building your own trusted execution environments using fpga[C]∥Proceedings of the 19th ACM Asia Conference on Computer and Communications Security,Singapore, 2024: 1584-1599.
34 Cerdeira D, Martins J, Santos N, et al. ReZone: Disarming TrustZone with TEE privilege reduction[C]∥31st USENIX Security Symposium (USENIX Security 22), Bostion, MA, USA, 2022: 2261-2279.
35 Cerdeira D, Martins J, Santos N, et al. ReZone: Disarming TrustZone with TEE Privilege Reduction[C]∥31st USENIX Security Symposium, Boston, MA, USA, 2022: 2261-2279.
36 Nasahl P, Schilling R, Werner M, et al. Hector-V: a heterogeneous CPU architecture for a secure RISC-V execution environment[C]∥Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, Hong Kong, China, 2021: 187-199.
37 Deng Y, Wang C, Yu S, et al. Strongbox: a GPU TEE on arm endpoints[C]∥Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 2022: 769-783.
38 Xia K, Luo Y, Xu X, et al. SGX-FPGA: trusted execution environment for CPU-FPGA heterogeneous architecture[C]∥2021 58th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2021: 301-306.
39 Kang L, Xue Y, Jia W, et al. IceClave: a trusted execution environment for in-storage computing[C]∥MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, Greece, 2021: 199-211.
40 Zhao M, Gao M, Kozyrakis C. ShEF: shielded enclaves for cloud FPGAS[C]∥Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 2022: 1070-1085.
41 Xu L, Shi W, Suh T. PFC: Privacy preserving FPGA cloud—a case study of MapReduce[C]∥2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 2014: 280-287.
42 Chien H J, Khalili H, Hass A, et al. Enc2: privacy-preserving inference for tiny IoTs via encoding and encryption[C]∥Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain, 2023: 1-16.
43 Oh H, Nam K, Jeon S, et al. MeetGo: a trusted execution environment for remote applications on FPGA[J]. IEEE Access, 2021, 9: 51313-51324.
44 Ren W, Kozlowski W, Koteshwara S, et al. AccShield: a new trusted execution environment with machine-learning accelerators[C]∥2023 60th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2023: 1-6.
45 Jang I, Tang A, Kim T, et al. Heterogeneous isolated execution for commodity gpus[C]∥Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, RI, USA, 2019: 455-468.
46 Kadav A, Swift M M. Understanding modern device drivers[J/OL].[2023-09-25].
47 Boyd-Wickizer S, Zeldovich N. Tolerating malicious device drivers in Linux[C]∥2010 USENIX Annual Technical Conference, Boston, MA, USA, 2010: 117-130.
48 Peters T, Lal R, Varadarajan S, et al. BASTION-SGX: bluetooth and architectural support for trusted I/O on SGX[C]∥Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy, Los Angeles, California, USA, 2018: 1-9.
49 Weiser S, Werner M. SGXIO: generic trusted I/O path for intel SGX[C]∥Proceedings of the 7th ACM on Conference on Data and Application Security and Privacy, Scottsdale, Arizona, USA, 2017: 261-268.
50 Suzuki Y, Kato S, Yamada H, et al. GPUvm: why not virtualizing GPUs at the hypervisor?[C]∥2014 USENIX Annual Technical Conference, Philadelphia, PA, USA, 2014: 109-120.
51 Yu H, Rossbach C J. Full virtualization for GPUs reconsidered[J/OL]. [2023-09-27].
52 Zhou Z, Gligor V D, Newsome J, et al. Building verifiable trusted path on commodity x86 computers[C]∥2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 2012: 616-630.
53 Ye M, Feng X, Wei S. HISA: Hardware isolation-based secure architecture for CPU-FPGA embedded systems[C]∥2018 IEEE/ACM International Conference on Computer-Aided Design, San Diego, CA, USA, 2018: 1-8.
54 Dessouky G, Isakov M, Kinsy M A, et al. Distributed memory guard: enabling secure enclave computing in NoC-based architectures[C]∥2021 58th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2021: 985-990.
55 Jiang J, Qi J, Shen T, et al. CRONUS: fault-isolated, secure and high-performance heterogeneous computing for trusted execution environment[C]∥2022 55th IEEE/ACM International Symposium on Microarchitecture, Chicago, IL, USA, 2022: 124-143.
56 Oliveira D, Gomes T, Pinto S. uTango: an open-source TEE for IoT devices[J]. IEEE Access, 2022, 10: 23913-23930.
57 Brasser F, Gens D, Jauernig P, et al. SANCTUARY: ARMing TrustZone with user-space enclaves[C]∥NDSS, San Diego, California, 2019: 1-15.
58 Gong R, Wang L, Shi W, et al. A hardware security isolation architecture for intelligent accelerator[C]∥2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Wuhan, China, 2022: 984-991.
59 Wang J, Mahmoody P, Brasser F, et al. VirTEE: a full backward-compatible TEE with native live migration and secure I/O[C]∥Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2022: 241-246.
60 Gu J Y, Li H, Xia Y B, et al. Unified enclave abstraction and secure enclave migration on heterogeneous security architectures[J]. Journal of Computer Science and Technology, 2022, 37(2): 468-486.
61 Zhu J, Hou R, Wang X F, et al. Enabling rack-scale confidential computing using heterogeneous trusted execution environment[C]∥2020 IEEE Symposium on Security and Privacy, San Francisco, CA, USA,2020: 1450-1465.
62 Volos S, Vaswani K, Bruno R. Graviton: trusted execution environments on GPUs[C]∥13th USENIX Symposium on Operating Systems Design and Implementation, Carlsbad, CA, USA, 2018: 681-696.
63 Korona M, Zabołotny B, Kozioł F, et al. IoTrust—a HW/SW framework supporting security core baseline features for IoT[C]∥2023 18th Conference on Computer Science and Intelligence Systems, Warsaw, Poland, 2023: 1029-1034.
64 Vaswani K, Volos S, Fournet C, et al. Confidential computing within an AI accelerator[C]∥2023 USENIX Annual Technical Conference, Boston, Ma, USA, 2023: 501-518.
65 Banerjee S, Wei S, Ramrakhyani P, et al. Triton: software-defined threat model for secure multi-tenant ML inference accelerators[C]∥Proceedings of the 12th International Workshop on Hardware and Architectural Support for Security and Privacy, Toronto Canada, 2023: 19-28.
66 Lee S, Shih M W, Gera P, et al. Inferring fine-grained control flow inside SGX Enclaves with branch shadowing[C]∥26th USENIX Security Symposium, Vancouver, Canada, 2017: 557-574.
67 Van Bulck J, Piessens F, Strackx R. Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic[C]∥Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Canada, 2018: 178-195.
68 Van Bulck J, Weichbrodt N, Kapitza R, et al. Telling your secrets without page faults: stealthy page table-based attacks on enclaved execution[C]∥26th USENIX Security Symposium, Vancouver, Canada, 2017: 1041-1056.
69 Xu Y, Cui W, Peinado M. Controlled-channel attacks: deterministic side channels for untrusted operating systems[C]∥2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 2015: 640-656.
70 Chen S, Zhang X, Reiter M K, et al. Detecting privileged side-channel attacks in shielded execution with Déjá Vu[C]∥Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2017: 7-18.
71 Kocher P, Horn J, Fogh A, et al. Spectre attacks: exploiting speculative execution[J]. Communications of the ACM, 2020, 63(7): 93-101.
72 Shinde S, Chua Z L, Narayanan V, et al. Preventing page faults from telling your secrets[C]∥Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi'an, China, 2016: 317-328.
73 van Bulck J, Minkin M, Weisse O, et al. Foreshadow: extracting the keys to the intel SGX kingdom with transient out-of-order execution[C]∥27th USENIX Security Symposium, Baltimore, USA, 2018: 991–1008.
74 Kocher P, Horn J, Fogh A, et al. Spectre attacks: Exploiting speculative execution[J]. Communications of the ACM, 2020, 63(7): 93-101.
75 Lipp M, Schwarz M, Gruss D, et al. Meltdown: Reading kernel memory from user space[J]. Communications of the ACM, 2020, 63(6): 46-56.
76 Ramesh C, Patil S B, Dhanuskodi S N, et al. FPGA side channel attacks without physical access[C]∥2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines, Boulder, CO, USA, 2018: 45-52.
77 Buhren R, Jacob H N, Krachenfels T, et al. One glitch to rule them all: fault injection attacks against amd's secure encrypted virtualization[C]∥Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Korea, 2021: 2875-2889.
78 Halderman J A, Schoen S D, Heninger N, et al. Lest we remember: cold-boot attacks on encryption keys[J]. Communications of the ACM, 2009, 52(5): 91-98.
79 Pandey S S, Banerjee N, Xie Y, et al. Self‐destructing secured microchips by on‐chip triggered energetic and corrosive attacks for transient electronics[J]. Advanced Materials Technologies, 2018, 3(7): No. 1800044.
80 Srilatha P. Self destructing electronics[J]. IOSR Journal of Electrical and Electronics Engineering, 2014, 9(3): 24-30.
81 Yitbarek S F, Aga M T, Das R, et al. Cold boot attacks are still hot: security analysis of memory scramblers in modern processors[C]∥2017 IEEE International Symposium on High Performance Computer Architecture, Austin, TX, USA, 2017: 313-324.
82 Halderman J A, Schoen S D, Heninger N, et al. Lest we remember: cold-boot attacks on encryption keys[J]. Communications of the ACM, 2009, 52(5): 91-98.
83 Gruhn M, Müller T. On the practicability of cold boot attacks[C]∥2013 International Conference on Availability, Reliability and Security, Regensburg, Germany, 2013: 390-397.
84 Jyothi V, Thoonoli M, Stern R,et al.FPGA trust zone: incorporating trust and reliability into FPGA designs[C]∥2016 IEEE 34th International Conference on Computer Design,Scottsdale,AZ,USA, 2016: 600-605.
85 Azab A M, Swidowski K, Bhutkar R, et al. SKEE: a lightweight secure kernel-level execution environment for ARM[C]∥NDSS, San Diego, CA, USA 2016: 21-24.
86 Mark H. Computing's energy problem (and what we can do about it)[C]∥Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA. 2014: 9-13.
[1] 车翔玖,武宇宁,刘全乐. 基于因果特征学习的有权同构图分类算法[J]. 吉林大学学报(工学版), 2025, 55(2): 681-686.
[2] 蔡晓东,周青松,张言言,雪韵. 基于动静态和关系特征全局捕获的社交推荐模型[J]. 吉林大学学报(工学版), 2025, 55(2): 700-708.
[3] 赵孟雪,车翔玖,徐欢,刘全乐. 基于先验知识优化的医学图像候选区域生成方法[J]. 吉林大学学报(工学版), 2025, 55(2): 722-730.
[4] 刘元宁,臧子楠,张浩,刘震. 基于深度学习的核糖核酸二级结构预测方法[J]. 吉林大学学报(工学版), 2025, 55(1): 297-306.
[5] 郭晓然,王铁君,闫悦. 基于局部注意力和本地远程监督的实体关系抽取方法[J]. 吉林大学学报(工学版), 2025, 55(1): 307-315.
[6] 汪豪,赵彬,刘国华. 基于时间和运动增强的视频动作识别[J]. 吉林大学学报(工学版), 2025, 55(1): 339-346.
[7] 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645.
[8] 赵宏伟,武鸿,马克,李海. 基于知识蒸馏的图像分类框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2307-2312.
[9] 张云佐,郑宇鑫,武存宇,张天. 基于双特征提取网络的复杂环境车道线精准检测[J]. 吉林大学学报(工学版), 2024, 54(7): 1894-1902.
[10] 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776.
[11] 李延风,刘名扬,胡嘉明,孙华栋,孟婕妤,王奥颖,张涵玥,杨华民,韩开旭. 基于梯度转移和自编码器的红外与可见光图像融合[J]. 吉林大学学报(工学版), 2024, 54(6): 1777-1787.
[12] 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766.
[13] 梁礼明,周珑颂,尹江,盛校棋. 融合多尺度Transformer的皮肤病变分割算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1086-1098.
[14] 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113.
[15] 拉巴顿珠,扎西多吉,珠杰. 藏语文本标准化方法[J]. 吉林大学学报(工学版), 2024, 54(12): 3577-3588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!