吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 307-315.doi: 10.13229/j.cnki.jdxbgxb.20230259
• 计算机科学与技术 • 上一篇
Xiao-ran GUO1(
),Tie-jun WANG1,Yue YAN2
摘要:
针对复杂语境下重叠三元组的实体关系抽取,本文提出了一种基于局部注意力和本地远程监督的联合抽取方法LARE。首先,设计了指针式分层序列标注方案解决三元组的实体重叠问题;其次,提出局部注意力机制,通过滑动窗口进行注意力计算以关注局部细节信息;最后,建立本地知识库,训练时利用远程监督方式进行标注,并随机替换一些实体关系对生成新的训练句子,增强模型的拟合能力。对比实验结果表明,本文方法在百度数据集和唐卡数据集上的F1值分别为81.49%和53.07%,优于其他基线模型,提升了实体重叠情况下的关系抽取性能。
中图分类号:
| 1 | 张少伟, 王鑫, 陈子睿, 等. 有监督实体关系联合抽取方法研究综述[J].计算机科学与探索, 2022, 16(4): 713-733. |
| Zhang Shao-wei, Wang Xin, Chen Zi-rui,et al. Survey of supervised joint entity relation extraction methods[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 713-733. | |
| 2 | 欧阳丹彤, 肖君, 叶育鑫. 基于实体对弱约束的远监督关系抽取[J]. 吉林大学学报: 工学版, 2019, 49(3): 912-919. |
| Ouyang Dan-tong, Xiao Jun, Ye Yu-xin. Distant supervision for relation extraction with weak constraints of entity pairs[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919. | |
| 3 | Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]∥Proc of the ACL on Interactive Poster and Demonstration Sessions, Stroudsburg, USA, 2004: 22-26. |
| 4 | Miwa M, Bansal M. End-to-end relation extraction using LSTMs on sequences and tree structures[J/OL]. [2023-02-12]. . |
| 5 | Zheng S, Hao Y, Lu D, et al. Joint entity and relation extraction based on a hybrid neural network[J]. Neurocomputing, 2017, 257: 59-66. |
| 6 | Li F, Zhang M, Fu G, et al. A neural joint model for entity and relation extraction from biomedical text[J]. Bmc Bioinformatics, 2017, 18(1): 198-208. |
| 7 | Zheng S, Wang F, Bao H, et al. Joint extraction of entities and relations based on a novel tagging scheme[J/OL]. [2023-02-13]. arXiv preprint arXiv:1706. 05075v1. |
| 8 | Bekoulis G, Deleu J, Demeester T, et al. Joint entity recognition and relation extraction as a multi-head selection problem[J]. Expert Systems with Applications, 2018, 114: 34-45. |
| 9 | Zeng X R, Zeng D J, He S Z, et al. Extracting relational facts by an end-to-end neural model with copy mechanism[C]∥Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 506-514. |
| 10 | Wang S, Zhang Y, Che W, et al. Joint extraction of entities and relations based on a novel graph scheme[C]∥The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden,2018: 4461-4467. |
| 11 | Fu T J, Li P H, Ma W Y. GraphRel: modeling text as relational graphs for joint entity and relation extraction[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 1409-1418. |
| 12 | 冯冲, 康丽琪, 石戈, 等. 融合对抗学习的因果关系抽取[J].自动化学报, 2018, 44(5): 811-818. |
| Feng Chong, Kang Li-qi, Shi Ge, et al. Causality extraction with GAN[J]. Acta Automatica Sinica, 2018, 44(5): 811-818. | |
| 13 | 黄培馨, 赵翔, 方阳, 等. 融合对抗训练的端到端知识三元组联合抽取[J].计算机研究与发展, 2019, 56(12): 2536-2548. |
| Huang Pei-xin, Zhao Xiang, Fang Yang. End-to end knowledge triplet extraction combined with adversarial training[J]. Journal of Computer Research and Development, 2019, 56(12): 2536-2548. | |
| 14 | 杨穗珠, 刘艳霞, 张凯文, 等. 远程监督关系抽取综述[J].计算机学报,2021, 44(8): 1636-1660. |
| Yang Sui-zhu, Liu Yan-xia, Zhang Kai-wen, et al. Survey on distantly-supervised relation extraction[J]. Chinese Journal of Computers,2021,44(8):1636-1660. | |
| 15 | Mintz M, Bills S, Snow R, et al. Distant supervision for relation extraction without labeled data[C]∥Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Suntec, Singapore, 2009: 1003-1011. |
| 16 | Zeng D J, Liu K, Chen Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]∥Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015: 1753- 1762. |
| 17 | Lin Y K, Shen S Q, Liu Z Y, et al. Neural relation extraction with selective attention over instances[C]∥The 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016: 2124-2133. |
| 18 | Wu Y, Bamman D, Russell S. Adversarial training for relation extraction[C]∥Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 1778-1783. |
| 19 | Feng J, Huang M L, Zhao L, et al. Reinforcement learning for relation classification from noisy data[C]∥The 32th AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 5779-5786. |
| 20 | Shang Y, Huang H Y, Mao X L, et al. Are noisy sentences useless for distant supervised relation extraction?[C]∥The 34th AAAI Conference on Artificial Intelligence, New York, USA,2020: 8799-8806. |
| 21 | 苏剑林. 百度2019语言与智能技术竞赛baseline模型 [EB/OL]. [2023-02-20]. |
| Su Jian-lin. Baidu 2019 language and intelligent technology competition baseline model[EB/OL]. [2023-02-20]. | |
| 22 | Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL]. [2023-02-14]. . |
| 23 | Dauphin Y N, Fan A, Auli M, et al. Language modeling with gated convolutional networks[C]∥Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 933-941. |
| [1] | 刘元宁,臧子楠,张浩,刘震. 基于深度学习的核糖核酸二级结构预测方法[J]. 吉林大学学报(工学版), 2025, 55(1): 297-306. |
| [2] | 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637. |
| [3] | 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645. |
| [4] | 赵宏伟,武鸿,马克,李海. 基于知识蒸馏的图像分类框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2307-2312. |
| [5] | 张云佐,郑宇鑫,武存宇,张天. 基于双特征提取网络的复杂环境车道线精准检测[J]. 吉林大学学报(工学版), 2024, 54(7): 1894-1902. |
| [6] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
| [7] | 李延风,刘名扬,胡嘉明,孙华栋,孟婕妤,王奥颖,张涵玥,杨华民,韩开旭. 基于梯度转移和自编码器的红外与可见光图像融合[J]. 吉林大学学报(工学版), 2024, 54(6): 1777-1787. |
| [8] | 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766. |
| [9] | 梁礼明,周珑颂,尹江,盛校棋. 融合多尺度Transformer的皮肤病变分割算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1086-1098. |
| [10] | 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113. |
| [11] | 拉巴顿珠,扎西多吉,珠杰. 藏语文本标准化方法[J]. 吉林大学学报(工学版), 2024, 54(12): 3577-3588. |
| [12] | 周丰丰,于涛,范雨思. 基于质谱数据的生成对抗自编码器整合投票算法[J]. 吉林大学学报(工学版), 2024, 54(10): 2969-2977. |
| [13] | 田金鹏,侯保军. 基于深度展开自注意力网络的压缩感知图像重构[J]. 吉林大学学报(工学版), 2024, 54(10): 3018-3026. |
| [14] | 车娜,朱奕明,赵剑,孙磊,史丽娟,曾现伟. 基于联结主义的视听语音识别方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2984-2993. |
| [15] | 王法胜,贺冰,孙福明,周慧. 自适应内容感知空间正则化相关滤波跟踪算法[J]. 吉林大学学报(工学版), 2024, 54(10): 3037-3049. |
|
||