吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 219-224.doi: 10.13229/j.cnki.jdxbgxb201401036

• 论文 • 上一篇    下一篇

基于图像分割的三维立体匹配改进算法

何凯, 穆星, 邹刚   

  1. 天津大学 电子信息工程学院, 天津 300072
  • 收稿日期:2012-08-28 出版日期:2014-01-01 发布日期:2014-01-01
  • 作者简介:何凯(1972-),男,副教授,博士.研究方向:图像处理.E-mail:hekai626@163.com
  • 基金资助:

    国家自然科学基金项目(61271326).

Improved segment-based 3D surface stereo matching algorithm

HE Kai, MU Xing, ZOU Gang   

  1. School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2012-08-28 Online:2014-01-01 Published:2014-01-01

摘要:

传统基于分割的立体匹配算法所采用的局部匹配方法误匹配率较高,同时平面拟合也具有一定的局限性。为了获得高准确率的视差图,本文将改进的局部匹配方法与全局匹配相结合,来获取初始视差图;同时利用曲面拟合的方法对各分割区域进行处理,并在区域合并中提出了新的判决准则。仿真实验结果表明,本文算法能够获得较高精度的视差图,实现了各纹理区域之间的平滑过渡,同时,在低纹理区域和被遮挡区域也取得了比较理想的效果。

关键词: 信息处理技术, 三维重建, 立体匹配, 图像分割, 曲面拟合

Abstract:

In the traditional segment-based stereo matching approaches, local matching tends to get high mismatching rate; mover over, the plane fitting method has its limitation. In order to obtain high accuracy of disparity map, the initial disparity map is obtained by combining the improved local matching method with global one. Simultaneously, the surface model is utilized to fit each segmented region, and a decision rule of regions merging is proposed. The simulation results show that the proposed algorithm can obtain higher accuracy and more smooth disparity map between texture regions. Besides that, superior results are realized in both low-texture and texture-occluded regions.

Key words: information processing, 3D reconstruction, stereo matching, image segmentation, surface fitting

中图分类号: 

  • TN911.73

[1] Scharstein Aniel, Szeliski Richard. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal on Computer Vision, 2002, 47(1-3): 7-42.

[2] Tombari F, Mattoccia S, Di Stefano L. Classification and evaluation of cost aggregation methods for stereo correspondence[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

[3] 葛亮, 朱庆生, 傅思思, 等.改进的立体像对稠密匹配算法[J].吉林大学学报:工学版, 2010, 40(1), 212-217. Ge Liang, Zhu Qing-sheng, Fu Si-si, et al. Improved image dense stereo matching algorithm[J]. Journal of Jinlin University(Engineering and Technology Edition), 2010, 40(1): 212-217.

[4] Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//International Conference of Computer Vision Pattern Recognition, 2006:15-18.

[5] Yang Qing-xiong, Wang Liang, Yang Rui-gang. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling[J]. Pattern Analysis and Machine Intelligence, 2009, 31(3): 492-504.

[6] 李彬彬, 王敬东, 李鹏.基于图像分割的置信传播立体匹配算法研究[J].红外技术, 2011, 33(3):167-172. Li Bin-bin, Wang Jing-dong, Li Peng. Research of stereo matching using belief propagation based on image segmentation[J]. Infrared Technology, 2011, 33(3): 167-172.

[7] Zitnick L, Kang S B. Stereo for image-based rendering using image over-segmentation[J]. International Journal of Computer Vision, 2007, 75(1): 49-65.

[8] Papadakis N, Caselles V. Multi-label depth estimation for graph cuts stereo problems[J]. Journal of Mathematical Imaging and Vision, 2010, 38(1):70-82.

[9] De-Maeztu L, Villanueva A, Cabeza R. Stereo matching using gradient similarity and locally adaptive support-weight[J]. Pattern Recognition Letters, 2011, 32(13):1643-1651.

[10] Wang Z, Zheng Z. A region based stereo matching algorithm using cooperative optimization[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.

[11] Cassisa C. Local vs global energy minimization methods: application to stereo matching[C]//Progress in Informatics and Computing, 2010: 678-683.

[12] Liu Zhi-hua, Han Zhen-jun, Ye Qi-xiang. A new segment-based algorithm for stereo matching[C]//Mechatronics and Automation, 2009:999-1003.

[13] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE: Pattern Analysia and Machine Intelligence, 2002, 24(5): 603-619.

[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[12] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[13] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!