吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 225-234.doi: 10.13229/j.cnki.jdxbgxb201401037

• 论文 • 上一篇    下一篇

基于图像质量评价参数的非下采样剪切波域自适应图像融合

高印寒1, 陈广秋2,3, 刘妍妍2,3   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022;
    2. 吉林大学 仪器科学与电气工程学院, 长春 130061;
    3. 长春理工大学 电子信息工程学院, 长春 130022
  • 收稿日期:2012-12-12 出版日期:2014-01-01 发布日期:2014-01-01
  • 通讯作者: 陈广秋(1977-),男,讲师,博士研究生.研究方向:图像配准与融合.E-mail:guangqiu_chen@126.com E-mail:guangqiu_chen@126.com
  • 作者简介:高印寒(1951-),男,教授,博士生导师.研究方向:车辆测试技术及机器视觉.E-mail:yinhan@jlu.edu.cn
  • 基金资助:

    高等学校博士学科点专项科研基金项目(20110061110059);吉林省科技发展计划重点项目(20110326).

Adaptive image fusion based on image quality assessment parameter in NSST system

GAO Yin-han1, CHEN Guang-qiu2,3, LIU Yan-yan2,3   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China;
    3. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2012-12-12 Online:2014-01-01 Published:2014-01-01

摘要:

为了提升多源图像融合精度,提出了一种基于图像质量评价参数的非下采样剪切波(NSST)域图像自适应融合方法。利用非下采样剪切波变换对源图像进行多尺度、多方向分解,低频子带图像采用结构相似度与空间频率两种图像评价参数作为系数权值,高频子带图像应用绝对值与邻域平均能量一致性选择的融合策略。应用非下采样剪切波逆变换重构图像。采用多组多源图像进行融合实验,并对融合结果进行了客观评价。实验结果表明:本文方法在主观和客观评价上均优于其他多尺度融合方法,具有更好的融合效果。

关键词: 信息处理技术, 非下采样剪切波, 融合策略, 客观评价, 平移不变性

Abstract:

To enhance the multi-source image fusion accuracy, an adaptive fusion method based on image quality assessment parameter in Nonsubsampled Shearlet Transform (NSST) domain is proposed. The Source images are decomposed to subband images with multi-scale and multi-direction in NSST. The low frequency subband fusion rule is based on the structural similarity index with spatial frequency as coefficient weights. For the high frequency subands, the fusion rule of coefficient absolute value with neighborhood average energy consistency selection is adopted. The fused low and high frequency coefficients are reconstructed to image by nonsubsampled shearlet inverse transform. Fusion experiments are conducted with several sets of different modality images, and the objective assessment of fused results is done. The experiment results show that the proposed algorithm performs better in subjective and objective assessments than a few existing multi-scale fusion techniques, and obtains better fusion performance.

Key words: information processing, nonsubsampled shearlet transform, fusion rule, objective assessment, shift-invariant

中图分类号: 

  • TN911

[1] 胡钢, 刘哲, 徐小平, 等. 像素级图像融合技术的研究与进展[J].计算机应用研究, 2008, 25(3):650-655. Hu Gang, Liu Zhe, Xu Xiao-ping, et al. Research and recent development of image fusion at pixel level[J].Application Research of Computers, 2008, 25(3):650-655.

[2] Cheng Ying-lei, Zhao Rong-chun, Wang Bing, et al. An optimal algorithm of multisensor image fusion based on wavelet transform[C]//Processings of 7th International Conference on Signal Processing, Xi'an, 2004:1049-1051.

[3] Li Ming, Wu Shun-jun. A new image fusion algorithm based on wavelet transform[C]//Proceedings of 5th International Conference on Computational Intelligence and Multimedia Applications, Xi'an, 2003: 154-159.

[4] Candès E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Communications on Pure and Applied Mathematics, 2004, 57(2):219-266.

[5] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14 (12):2091-2106.

[6] Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis, 2008, 25(1):25-46.

[7] 叶传奇, 苗启广, 王保树. 基于非子采样的Contourlet变换的图像融合方法[J]. 计算机辅助设计与图形学学报, 2007, 19(10):1274-1278. Ye Chuan-qi, Miao Qi-guang, Wang Bao-shu. Image fusion method based on the nonsubsampled contourlet transform[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(10):1274-1278.

[8] Zheng You-zhi, Hou Xiao-dong, Bian Tian-tian, et al. Effective image fusion rules of multiscale image decomposition[C]//Proceedings of the 5th International Symposium on Image and Signal Processing and Analysis, Istanbul, 2007:362-366.

[9] 张强, 郭宝龙. 基于Curvelet变换的图像融合算法[J].吉林大学学报:工学版, 2007, 37(2):458-463. Zhang Qiang, Guo Bao-long. Image fusion algorithm using Curvelet transform[J].Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2):458-463.

[10] Guo K, Labate D, Lim W Q, et al. Wavelets with composite dilations and their MRA properties[J]. Applied and Computational Harmonic Analysis, 2006, 20(2):202-236.

[11] Guo K, Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1):298-318.

[12] Wang Zhou, Bovik Alan C, Sheikh Hamid R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

[13] Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965.

[14] Leung L W, King B, Vohora V. Comparison of image data fusion techniques using entropy and INI[C]//Proc of 22nd Asian Conference on Remote Sensing, Singapore, 2001: 152-157.

[15] Qu Gui-hong, Zhang Da-li, Yan Ping-fan. Information measure for performance of image fusion[J]. Electronic Letters, 2002, 38(7):313-315.

[16] Xydeas C S, Petrovi V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4):308-309.

[17] Zhang Zhong, Blum Rick S. A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999, 87(8): 1315-1326.

[18] 王朝晖, 王佳琪, 赵德功, 等. 基于Shearlet与改进PCNN的图像融合[J].激光与红外, 2012, 42(2):213-216. Wang Zhao-hui, Wang Jia-qi, Zhao De-gong, et al.Image Fusion based on Shearlet and improved PCNN[J]. Laser & Infrared, 2012, 42(2):213-216.

[19] 叶传奇, 王宝树, 苗启广. 基于NSCT变换的红外与可见光图像融合算法[J].系统工程与电子技术, 2008, 30(4): 593-596. Ye Chuan-qi, Wang Bao-shu, Miao Qi-guang. Fusion algorithm of infrared and visible light images based on NSCT transform[J]. Systems Engineering and Electronics, 2008, 30(4):593-596.

[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!