吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1913-1923.doi: 10.13229/j.cnki.jdxbgxb201506027

• • 上一篇    下一篇

基于“三步法”的柴油机urea-SCR系统控制设计

赵靖华1,2, 陈志刚1, 胡云峰1, 陈虹1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林师范大学 计算机学院,吉林 四平 136002
  • 收稿日期:2015-01-27 出版日期:2015-11-01 发布日期:2015-11-01
  • 通讯作者: 陈虹(1963-),女,教授,博士生导师.研究方向:非线性控制应用及汽车电子控制.E-mail:chenh@jlu.eud.cn
  • 作者简介:赵靖华(1980-),男,讲师,博士.研究方向:发动机尾气排放控制.E-mail:zhaojh08@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(61034001); 吉林省科技发展计划、吉林省公共计算平台基金资助项目(20130101179JC-16)

Design of diesel engine's urea-SCR system controller using triple-step method

ZHAO Jing-hua1,2, CHEN Zhi-gang1, HU Yun-feng1, CHEN Hong1   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China;
    2.Computer College, Jilin Normal University, Siping 136002, China
  • Received:2015-01-27 Online:2015-11-01 Published:2015-11-01

摘要: 为了同时实现较高的NOx转化率和较低的氨逃逸,提出了一种新颖的面向控制的urea-SCR模型,基于三步非线性控制方法——“三步法”设计了控制器。该控制器能够调节时变参数的非线性系统,跟踪理想的氨覆盖率目标。针对测量噪声和系统的不确定性,研究分析了该闭环系统的稳定性。研究基于精确enDYNA模型,在FTP75瞬态测试循环条件下,与蒙特卡罗随机参数法选取的最优PID控制器对比表明,所提出的控制策略具有很大优势。

关键词: 自动控制技术, 尿素选择性催化还原系统控制, 三步非线性控制方法(“三步法”), 输入状态稳定性理论

Abstract: For simultaneously achieving NOx conversion efficiency and low ammonia slip, a new control-oriented model of urea-SCR systems and novel nonlinear controller based on triple-step nonlinear method are presented. The proposed controller could drive the parameter-varying nonlinear system to track the desired ammonia coverage ratio. The robustness of the controller against the measurement noises and system uncertainties are analyzed. Based on validated enDYNA model, transient FTP75 driving cycle simulation is conducted to evaluate the effectiveness of the proposed strategy. Comparisons with Monte Carlo methods' optimal PID controller are presented to show the advantages of the proposed strategy.

Key words: automation technology, urea-SCR systems control, triple-step method, input-to-state stable

中图分类号: 

  • TP273
[1] 刘忠长,孙士杰,田径,等. 瞬态工况下喷油参数对柴油机排放及燃烧特性的影响[J]. 吉林大学学报:工学版,2014,44(6): 1639-1646.
Liu Zhong-chang, Sun Shi-jie, Tian Jing, et al. Influences of fuel injection parameters on emissions and combustion of diesel engine under transient conditions[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1639-1646.
[2] Johnson T V. Diesel emission control in review[J]. SAE Int J Fuels Lubr, 2009, 1(1): 68-81.
[3] Sch`ar C M, Onder C H, Geering H P. Control of an SCR catalytic converter system for a mobile heavy-duty application[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 641-653.
[4] Johnson T V. Review of diesel emissions and control[J]. International Journal of Engine Research, 2009, 10(5): 275-285.
[5] Gabrielsson P L T. Urea SCR in automotive applications[J]. Topics in Catalysis, 2004, 28(1-4): 177-184.
[6] Chiang C J, Kuo C L, Huang C C, et al. Model predictive control of SCR aftertreatment system[C]∥IEEE Conference on Industrial Electronics and Applications, 2010: 2058-2063.
[7] Devarkonda M, Parker G, Johnson J H. Model-based control system design in a urea-SCR aftertreatment system based on NH 3 sensor feedback[J]. International Journal of Automotive Technology, 2009, 10(6): 653-662.
[8] Zhao J, Yang T L, Lu G Y. Enhancement of NO 2 gas sensing response based on ordered mesoporous fe-doped In 2 O 3 [J]. In Sensors and Actuators B, 2014, 191: 806-812.
[9] 侯洁,颜伏伍,胡杰,等. Urea-SCR系统NO x 传感器的NH 3 交叉感应研究[J]. 内燃机学报,2014,32(3): 249-253.
Hou Jie, Yan Fu-wu, Hu Jie, et al. Ammonia cross-sensitivity of NO x sensor for Urea-SCR system[J]. Transactions of CSICE, 2014,32(3): 249-253.
[10] Hsieh M, Wang J. Diesel engine selective catalytic reduction ammonia surface coverage control using a computationally-efficient model predictive control assisted method[J]. Proceedings of the ASME Dynamic Systems and Control Conference, 2009, 1: 865-872.
[11] Westerlund C, Westerberg B. Model predictive control of a combined EGR/SCR HD diesel engine[C]∥SAE Technical Papers, 2010-01-1175.
[12] Hsieh M, Wang J. A two-cell backstepping-based control strategy for diesel engine selective catalytic reduction systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1504-1515.
[13] Hsieh M, Wang J. Backstepping based nonlinear ammonia surface coverage ratio control for diesel engine selective catalytic reduction systems[J]. In Proceedings of the ASME Dynamic Systems and Control Conference, 2009, 1:1-8.
[14] Zhang H, Wang J, Wang Y Y. Robust filtering for ammonia coverage estimation in diesel engine selective catalytic reduction systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2013,064504.
[15] Bonfils A, Creff Y, Lepreux O, et al. Closed-loop control of a SCR system using a NO x sensor cross-sensitive to NH 3 [J]. Journal of Process Control, 2014, 24:368-378.
[16] Bin Y, Li K Q, Ukawa H, et al. Modelling and control of a non-linear dynamic system for heavy-duty trucks[J]. Journal of Automobile Engineering, 2006, 220(10):1423-1435.
[17] Li T H S, Huang C J, Chen C C. Novel fuzzy feedback linearization strategy for control via differential geometry approach[J]. ISA Transactions, 2010, 49:348-357.
[18] Ma M M, Chen H, Cong Y F. Backstepping based constrained control of nonlinear hydraulic active suspensions[C]∥in Proceedings of the 26th Chinese Control Conference. Hunan China, 2007: 463-466.
[19] Gao B Z, Chen H, Sanada K, et al. Design of clutch slip controller for automatic transmission using backstepping[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(3):498-508.
[20] Chen H, Gong X, Liu Q F, et al. Triple-step method to design non-linear controller for rail pressure of gasoline direct injection engines[J]. IET Control Theory and Applications, 2014, 8(11): 948-959.
[21] Zhao H Y, Gao B Z, Ren B T, et al. Integrated control of in-wheel motor electric vehicles using a triple-step nonlinear method[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2015, 352(2): 519-540.
[22] Willi R. Low-temperature selective catalytic reduction of catalytic behavior and kinetic modeling[D]. Switzerland: ETH Zurich, 1996.
[23] Heiredal M L, Jensen A D, Thogersen J R, et al. Pilot-scale investigation and cfd modeling of particle deposition in low-dust monolithic SCR deNO x catalysts[J]. AIChE Journal, 2013, 59(6): 1919-1933.
[24] Kota A S, Luss D, Balakotaiah V. Modeling studies of low-temperature aerobic NO x reduction by a sequence of LNT-SCR catalysts[J]. AIChE Journal, 2013, 59(9): 3421-3431.
[25] Hsieh M. Control of diesel engine urea selective catalytic reduction systems[D]. Ohio: Ohio State University, 2010.
[26] Piazzesi G, Devadas M, Krocher O, et al. Isocyanic acid hydrolysis over fe-zam5 in urea SCR[C]∥Catalysis Communications, 2006, :600-602.
[27] Philipp O, Huber M. Development and test of ECU functions for OBD with enDYNA[C]∥Proc JSAE Annual Congress, 2004.
[28] Wang P, Chen H, Yang X P, et al. Design and analysis of a model predictive controller for active queue management[J]. ISA Transactions, 2012, 51: 120-131.
[29] Tempo R, Calafiore G, Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems[M]. New York: Springer-Verlag, 2005.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!