吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1604-1608.doi: 10.13229/j.cnki.jdxbgxb201406011

• • 上一篇    下一篇

基于Adaboost算法的日间前方车辆检测

金立生1, 王岩1, 刘景华2, 王亚丽1, 郑义1   

  1. 1.吉林大学 交通学院,长春 130022;
    2.郑州宇通客车股份有限公司,郑州 450000
  • 收稿日期:2012-09-20 出版日期:2014-11-01 发布日期:2014-11-01
  • 作者简介:金立生(1975-),男,教授,博士生导师.研究方向:汽车安全与智能车辆导航技术.E-mail:
  • 基金资助:
    清华大学汽车安全与节能国家重点实验室开放基金项目(KF14182); 吉林省科技厅重大项目(20116017); 教育部新世纪优秀人才基金项目(NCET-10-0435)

Front vehicle detection based on Adaboost algorithm in daytime

JIN Li-sheng1, WANG Yan1, LIU Jing-hua2, WANG Ya-li1, ZHENG Yi1   

  1. 1.College of Traffic, Jilin University, Changchun 130022, China;
    2.Zhengzhou Yutong Bus Co., Ltd., Zhengzhou 450000, China
  • Received:2012-09-20 Online:2014-11-01 Published:2014-11-01

摘要: 提出了一种基于类Haar特征和Adaboost算法的车辆检测方法,以解决汽车安全辅助驾驶系统中对前方车辆的信息感知问题。基于类Haar方法对训练集的积分图进行提取,采用Adaboost算法选取有效的类Haar特征并生成前方车辆检测分类器。利用前方车辆检测分类器对PETS(Performance evaluation of tracking and surveillance)提供的图片进行测试。试验结果表明:该方法可以快速、准确地实现日间前方车辆的检测。

关键词: 交通运输安全工程, 车辆检测, 类Haar特征, Adaboost算法

Abstract: A novel vehicle detection method based on Haar-like features and Adaboost algorithm is proposed to improve the capability of front vehicle detection of the driver assistance system. First, Haar-like features are selected from the training samples. Then, a learning algorithm based on Adaboost selects the efficient features from the Haar-like feature sets to yield vehicle detection classifier. The classifier is used to examine the testing samples by the pictures provided by the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Result show that the proposed method can detect vehicles rapidly and effectively in daytime.

Key words: traffic and transportation safety engineering, vehicle recognition, Haar-like characteristic, Adaboost algorithm

中图分类号: 

  • U495
[1] 胡铟,杨靖宇. 基于单目视觉的路面车辆检测及跟踪方法综述[J]. 公路交通科技,2007,24(12):127-131. Hu Yin, Yang Jing-yu. Vehicle detection and tracking based on monocular vision[J]. Journal of Highway and Transportation Research and Development, 2007, 24(12): 127-131.
[2] 金立生,贾敏,孙玉芹,等. 日间高速公路侧后方车辆识别方法[J]. 西南交通大学学报,2010,45(2): 231-237. Jin Li-sheng, Jia Min, Sun Yu-qin, et al. Detection of backside vehicle on freeway in daytime[J]. Journal of Southwest Jiaotong University, 2010, 45(2): 231-237.
[3] 施树明,储江伟,李斌. 基于单目视觉的前方车辆探测方法[J]. 农业机械学报,2004,35(4): 5-8. Shi Shu-ming, Chu Jiang-wei, Li Bin. Study on detecting method of the preceding vehicle based on monocular camera[J]. Transactions of the Chinese Society of Agricultural Machinery, 2004, 35(4): 5-8.
[4] Fletcher L, Petersson L, Zelinsky A. Driver assistance systems based on vision in and out of vehicles[C]∥IEEE Proceedings of Intelligent Vehicles Symposium, 2003: 322-327.
[5] Srinivasa N. Vision-based vehicle detection and tracking method for forward collision warning in automobiles[C]∥IEEE Proceedings of Intelligent Vehicles Symposium, 2002: 626-631.
[6] Matthews N D, An P E, Charnley D, et al. Vehicle detection and recognition in grey scale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996, 4(4): 473-479.
[7] Clady X, Collange F, Jurie F, et al. Cars detection and tracking with a vision sensor[C]∥IEEE Proceedings of Intelligent Vehicles Symposium, 2003: 593-598.
[8] Papageorgiou C P, Oren M, Poggio T. A general frame-work for object detection[C]∥Sixth International Conference on Computer Vision, 1998:555-562.
[9] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]∥Proceedings of the 2001 IEEE Conference on Computer Society, 2001:511-518.
[10] Viola P, Jones M. Robust real-time object detection[J]. International Journal of Computer Vision,2004,55(2):137-154.
[11] 涂承胜,刁力力,鲁明羽,等.Boosting家族Adaboost系列代表长法[J].计算机科学,2003,30(3):30-34. Tu Cheng-sheng,Diao Li-li,Lu Ming-yu,et al.The typical algorithm of Adabast series in Boosting family[J].Computer Science,2003,30(3):30-34.
[12] 李斌,王荣本,郭克友. 基于机器视觉的智能车辆障碍物检测方法研究[J]. 公路交通科技,2002,19(4):126-129. Li Bin, Wang Rong-ben, Guo Ke-you. Study on machine vision based obstacle detection and recognition method for intelligent vehicle[J]. Journal of Highway and Transportation Research and Development, 2002, 19(4): 126-129.
[1] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[2] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[3] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[4] 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[5] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[6] 李琳辉, 伦智梅, 连静, 袁鲁山, 周雅夫, 麻笑艺. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报(工学版), 2017, 47(2): 384-391.
[7] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[8] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[9] 张浩, 刘海明, 吴春国, 张艳梅, 赵天明, 李寿涛. 基于多特征融合的绿色通道车辆检测判定[J]. 吉林大学学报(工学版), 2016, 46(1): 271-276.
[10] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[11] 王喆, 杨柏婷, 刘昕, 刘群, 宋现敏. 基于模糊聚类的驾驶决策判别[J]. 吉林大学学报(工学版), 2015, 45(5): 1414-1419.
[12] 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101.
[13] 徐建, 孙璐. 解决交通事故数据分析中零值问题的模型[J]. 吉林大学学报(工学版), 2015, 45(3): 769-775.
[14] 金立生,牛清宁,刘景华,秦彦光,吕欢欢. 不同道路线形下驾驶人认知分散状态监测[J]. 吉林大学学报(工学版), 2014, 44(3): 642-647.
[15] 詹伟, 吕庆, 尚岳全. 高速公路隧道群交通事故灰色马尔可夫预测[J]. 吉林大学学报(工学版), 2014, 44(01): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!