吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1782-1790.doi: 10.13229/j.cnki.jdxbgxb201706015

• 论文 • 上一篇    下一篇

计入浮环径向温度梯度的浮环轴承润滑性能

李佳琪1, 倪计民1, 高旭南2, 石秀勇1, 徐晓川1   

  1. 1.同济大学 汽车学院,上海 201804;
    2.柏林工业大学 交通与机械系统学院,德国 柏林 10623
  • 收稿日期:2016-08-31 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 倪计民(1963-),男,教授,博士生导师.研究方向:发动机热管理,涡轮增压器润滑系统.E-mail:njmwjyx@hotmail.com
  • 作者简介:李佳琪(1987-),男,博士研究生.研究方向:浮环轴承润滑机理.E-mail:lijiaqi_1987@126.com
  • 基金资助:
    国家自然科学基金项目(51106114); 上海市自然科学基金项目(16ZR1438500); 内燃机燃烧学国家重点实验室开放课题项目(K2016-04)

Analysis of lubrication performance of floating ring bearing considering radial temperature gradient

LI Jia-qi1, NI Ji-min1, GAO Xu-nan2, SHI Xiu-yong1, XU Xiao-chuan1   

  1. 1.School of Automotive Studies,Tongji University, Shanghai 201804,China;
    2.Faculty of Transport Systems and Mechanical Engineering Systems, Technical University of Berlin,Berlin 10623,Germany
  • Received:2016-08-31 Online:2017-11-20 Published:2017-11-20

摘要: 以浮环轴承为研究对象,计入浮环径向温度梯度,建立了浮环轴承分布温度模型和内膜-浮环-外膜热量传递模型。研究了浮环径向温度梯度对浮环轴承润滑性能的影响规律。结果表明:浮环轴承径向温度梯度对浮环轴承的润滑性能有显著影响,计入浮环径向温度梯度时,浮环轴承内膜温度增加,总摩擦功耗和总端泄流量略有减小;与浮环轴承内层间隙为0.02 mm时相比,内层间隙为0.04 mm时,内膜温度和总摩擦功耗分别减少了16.0%和15.9%;总摩擦功耗随内圆半径的增大而增加,适当减小浮环轴承的内圆宽度可以改善浮环轴承的润滑性能。

关键词: 机械零件, 机械设计, 径向温度梯度, 传热, 结构参数, 内膜温度, 润滑

Abstract: The temperature model and heat transfer model among inner-film-floating-ring-outer -film of floating ring bearing were established, in which the temperature gradient of the floating ring was taken into consideration. The effect of the temperature gradient on the lubrication performance of the floating ring bearing was discussed. Results show that, taking the radial temperature gradient of the floating ring into consideration, the inner-film temperature increases, the overall frictional power loss and end discharging capacity slightly decrease. With outer eccentricity ratio of 0.4, when the inner film clearance increases from 0.02mm to 0.04 mm, the inner film temperature and total power loss are decreased by 16.0% and 15.9%, respectively. The total power loss increases with the inner circle radius. The lubrication performance of the floating ring bearing can be improved remarkably by appropriately decreasing the inner circle width.

Key words: mechanical parts, mechanical design, radial temperature gradient, heat transfer, structural parameters, inner film temperature, lubrication

中图分类号: 

  • TH133.31
[1] Trippett R J,Li D F. High-speed floating ring bearing test and analysis[J]. ASLE Transactions,1987,27(1):73-81.
[2] Trippett R J. Measured and predicted friction in floating ring bearings[C]//SAE Paper,860075.
[3] Clarke D M, Fall C,Hayden G N,et al. A steady-state model of a floating ring bearing, including thermal effects[J]. ASME Journal of Tribology,1992,114(1):141-149.
[4] Chun S M. A parametric study on bubble lubrication of high-speed journal bearings[J]. Tribology International,2002,35(1):1-13.
[5] Chun S M. Thermohydrodynamic lubrication analysis of high-speed journal bearing considering variable density and variable specific heat[J]. Tribology International,2004,37(2):405-413.
[6] Chun S M. Aeration effects on the performance of a turbocharger journal bearing[J]. Tribology International,2008,41(4):296-306.
[7] Andres L S, Kerth J. Thermal effects on the performance of floating ring bearings for turbochargers[J]. Journal of Engineering Tribology,2004,218(5):1-14.
[8] Andres L S, Gjika K G,Larue G. Rotordynamics of small turbochargers supported on floating ring bearings-highlights in bearing analysis and experimental validation[J]. Journal of Tribology,2007,129(2):391-397.
[9] Andres L S, Barbarie V C,Bhattacharya A, et al. On the effects of thermal energy transport to the performance of (Semi) floating ring bearing systems for automotive turbochargers[J]. Journal of Engineering for Gas Turbings and Power,2012,134(10):1-10.
[10] Holt C,Andres L S,Sahay S,et al. Test response and nonlinear analysis of a turbocharger supported on floating ring bearings[J]. Journal of Vibration and Acoustics,2005,127(2):107-115.
[11] Li J Q,Ni J M, Wang Q W. Lubrication analysis floating ring bearing considering floating ring heat transfer[J]. SAE International Journal of Fuels and Lubricants,2016,9(1):14-22.
[12] Pei Shi-yuan,Xu Hua,Yun Meng,et al. Effects of surface texture on the lubrication performance of the floating ring bearing[J]. Tribology International,2016,102:143-153.
[13] 于晓东,付旭,刘丹,等. 环形腔多油垫静压推力轴承热变形[J]. 吉林大学学报:工学版,2015,45(2):460-465.
Yu Xiao-dong,Fu Xu,Liu Dan,et al. Thermal deformation of annular recess multi-pad hydrostatic thrust bearing[J]. Journal of Jilin University(Engineering and Technology Edition),2015,45(2):460-465.
[14] Chasalevris A. Finite length floating ring bearings:operational characteristics using analytical methods[J]. Tribology International,2016,94:571-590.
[15] Soni S, Vakharia D P. A steady-state performance analysis of a non-circular cylindrical floating ring journal bearing[J]. Journal of Engineering Tribology,2016,231(1):1-16.
[16] 李鹏举,岑少起,郭红. 浮环质量对动静压浮环轴承稳定性的影响[J]. 煤矿机械,2009,30(6):77-79.
Li Peng-ju,Cen Shao-qi,Guo Hong. Influence of mass of floating ring to stability of hybird floating ring bearing[J]. Coal Mine Machinery,2009,30(6):77-79.
[17] 王鸷,任兴民,张引娣,等. 浮环轴承旋转流体的基本研究[J]. 西北工业大学学报,2010,28(4):520-524.
Wang Zhi,Ren Xing-min,Zhang Yin-di,et al. Exploring further basic flow of rotating floating ring bearing[J]. Journal of Nothweastern Polytechnical University,2010,28(4):520-524.
[18] 郭红,张绍林,门日秀,等. 涡轮增压器浮环轴承静特性分析[J]. 润滑与密封,2013,38(11):81-85.
Guo Hong,Zhang Shao-lin,Men Ri-xiu,et al. Static characteristics analysis of turbocharger floating ring bearing[J]. Lubrication Engineering,2013,38(11):81-85.
[19] 张浩,师占群,张顺心,等. 基于质量守恒边界条件的浮环轴承贫油润滑特性理论分析[J].机械工程学报,2014,50(9):100-107.
Zhang Hao, Shi Zhan-qun, Zhang Shun-xin,et al. A theoretical investigation on staved lubricating characteristics of the floating ring bearing based on jacobsson-floberg-olsson boundary condition[J]. Journal of Mechanical Engineering,2014,50(9):100-107.
[20] 郑惠萍,代静,彭立强. 气穴对涡轮增压器浮环轴承油膜力的影响[J].润滑与密封,2015,40(7):60-64.
Zheng Hui-ping,Dai Jing,Peng Li-qiang. Influence of cavitations on floating ring bearing oil film force of turbocharger[J]. Lubircation Engineering,2015,40(7):60-64.
[21] Sun Jun,Deng Mei, Fu Yong-hong,et al. Thermohydrodynamic lubrication analysis of misaligned plain journal bearing with rough surface[J]. ASME Journal of Tribology,2010,132(1):111-118.
[22] 孙军. 曲轴-轴承系统摩擦学、刚度和强度的耦合研究[D]. 合肥:合肥工业大学机械与汽车工程学院,2005.
Sun Jun. Coupling research on tribology,stiffness and strength of crankshaft-bearing system[D]. Heifei:College of Mechanical and Automotive Engineering,Hefei University of Technology,2005.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 徐亮, 兰进, 王明森, 高建民, 李云龙. 旋度对旋转冲击射流传热特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1483-1491.
[5] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[6] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[7] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[8] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[9] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[10] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[11] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[12] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[13] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[14] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[15] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!