吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1811-1821.doi: 10.13229/j.cnki.jdxbgxb201706019

• 论文 • 上一篇    下一篇

不确定需求下的车间设施动态布局

查珊珊, 郭宇, 黄少华, 方伟光   

  1. 南京航空航天大学 机电学院,南京210016
  • 收稿日期:2016-09-09 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 郭宇(1971-),男,教授,博士生导师.研究方向:制造系统建模仿真,制造物联技术,智能制造.E-mail:guoyu@nuaa.edu.cn
  • 作者简介:查珊珊(1985-),女,博士研究生.研究方向:数字化设计制造,制造系统建模仿真.E-mail:sszha@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(51575274); 国防基础科研重点项目(A2620132010)

Dynamic facility layout for workshop under uncertain product demands

ZHA Shan-shan, GUO Yu, HUANG Shao-hua, FANG Wei-guang   

  1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2016-09-09 Online:2017-11-20 Published:2017-11-20

摘要: 针对不确定产品需求下车间设施动态布局问题,并考虑到现有不确定需求描述方法的不足,提出了一种结合模糊随机理论的车间设施动态布局方法。以最小化物料搬运成本、物料搬运总距离以及最大化面积利用率作为优化目标,构建了车间不等面积设施多目标动态布局模型,针对上述模型求解提出了一种基于位置的殖民竞争算法。最后,结合实例对比了确定、随机、模糊随机三种环境下产品需求的动态布局多目标优化模型,验证了模型的合理性和算法的有效性。

关键词: 机械工程, 动态布局, 不确定需求, 不等面积设施, 基于位置的殖民竞争算法

Abstract: Facility Layout Problem (FLP) has significant impact on manufacturing efficiency. It involves determining the optimal placement of different types of facilities within the boundaries of the workshop. FLP can be categorized into Static Facility Layout Problem (SFLP) and Dynamic Facility Layout Problem (DFLP). DFLP takes possible changes into account in the product demands over multiple periods. The facilities may need be dynamically placed several times to accommodate various demands accordingly. This work studies the DFLP under uncertain product demands. First, to solve the FLP caused by uncertainty and dynamics of material requirements between facilities, a method of dynamic facility layout combined with fuzzy-random theory is proposed considering the deficiency of the description of uncertain demands. Then, the main factors causing uncertain demands are analyzed and the uncertain demand are presented by fuzzy random variables. To minimize the material handling cost, rearrangement cost and total distances between various departments and maximize the area utilization ratio, a multi-objective dynamic layout model with unequal-area departments is established under fuzzy random environment. Finally, combining with system layout planning, the optimization method of the position-based colonial competitive algorithm is proposed to obtain feasible optimal solutions for the proposed problem. The rationality of the established model is validated by comparing practical model among the determined demands, random demands and fuzzy random demands. The effectiveness of the algorithm is demonstrated by computational results of the practical problems.

Key words: mechanical engineering, dynamic facility layout, uncertain demands, unequal-area departments, position-based colonial competitive algorithm

中图分类号: 

  • TH181
[1] Neghabi H, Eshghi K, Salmani M H. A new model for robust facility layout problem[J]. Information Sciences, 2014, 278:498-509.
[2] Kaveh M, Dalfard V M, Amiri S. A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints[J]. Neural Computing & Applications, 2014, 24(5):1179-1190.
[3] Hosseini S, Khaled A A, Vadlamani S. Hybrid colonial competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem[J]. Neural Computing & Applications, 2014, 25(7/8):1871-1885.
[4] Bozorgi N, Abedzadeh M, Zeinali M. Tabu search heuristic for efficiency of dynamic facility layout problem[J]. International Journal of Advanced Manufacturing Technology, 2014, 77(1-4):689-703.
[5] Fariborz J, Reza T, Mohammad T. A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations[J]. International Journal of Production Research, 2012, 50(15):4279-4293.
[6] Braglia M, Zavanella S Z L. Layout design in dynamic environments: Strategies and quantitative indices[J]. International Journal of Production Research, 2003,41(41):995-1016.
[7] 李聪波, 马辉杰, 李玲玲,等. 面向不确定性的再制造车间设施动态布局方法[J]. 计算机集成制造系统, 2015, 21(11):2901-2911.
Li Cong-bo, Ma Hui-jie, Li Ling-ling, et al. Dynamic facility layout method for remanufacturing shop with stochastic returns[J].Computer Integrated Manufacturing Systems,2015,21(11):2901-2911.
[8] Drira A, Pierreval H, Hajri-Gabouj S. Facility layout problems: a survey[J]. Annual Reviews in Control, 2007, 31(2):255-267.
[9] Allahyari M Z, Azab A. A novel bi-level continuous formulation for the cellular manufacturing system facility layout problem[J]. ProcediaCirp, 2015, 33:87-92.
[10] Klausnitzer A, Lasch R. Extended Model Formulation of the Facility Layout Problem with Aisle Structure[M]. Switzerland:Logistics Management, Springer International Publishing, 2016:45-51.
[11] Mckendall A R, Hakobyan A. Heuristics for the dynamic facility layout problem with unequal-area departments[J]. European Journal of Operational Research, 2010, 201(1):171-182.
[12] Mazinani M, Abedzadeh M, Mohebali N. Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm[J]. International Journal of Advanced Manufacturing Technology, 2013, 65(5-8):929-943.
[13] 马淑梅, 蔡惠森, 张一帆,等. 不确定需求下的设备动态布局方法[J]. 中国机械工程, 2015,26(11):1494-1502.
Ma Shu-mei, Cai Hui-sen, Zhang Yi-fan, et al. Dynamic facility layout method under uncertain product demands[J]. China Mechanical Engineering, 2015,26 (11):1494-1502.
[14] Salmani M H, Eshghi K, Neghabi H. A bi-objective MIP model for facility layout problem in uncertain environment[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1563-1575.
[15] Xu J, Song X. Multi-objective dynamic layout problem for temporary construction facilities with unequal-area departments under fuzzy random environment[J]. Knowledge-Based Systems, 2015,81(C):30-45.
[16] Atashpaz-Gargari E, Lucas C. Colonial competitive algorithm: An algorithm for optimization inspired by colonialic competition[C]//IEEE Congress on Evolutionary Computation, Singapore,2007:4661-4667.
[17] 周娜, 宓为建, 徐子奇,等. 基于改进型自适应遗传算法求解设备多行布局问题[J]. 上海交通大学学报, 2013, 47(12):1924-1929.
Zhou Na, Mi Wei-jian, Xu Zi-qi, et al. Solution to multi-line layout problems of equipment based on improved adaptive genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2013, 47(12):1924-1929.
[18] Heilpern S. The expected value of a fuzzy number[J].Fuzzy Set Syst,1992,47(1):81-86.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 贾拓,赵丁选,崔玉鑫. 铰接式装载机倾翻预警方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1762-1769.
[3] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[4] 臧鹏飞, 王哲, 孙晨乐, 林炼炼. 直线增程器稳态运行换气过程[J]. 吉林大学学报(工学版), 2018, 48(5): 1455-1465.
[5] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[6] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[7] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[8] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[9] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[10] 许秀军, 李震, 王立权, 张同喜. 海流边界下初始铺管作业建模及半物理仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 803-811.
[11] 李因武, 吴庆文, 常志勇, 杨成. 基于仿生斗齿的反铲液压挖掘机动臂仿真优化设计[J]. 吉林大学学报(工学版), 2018, 48(3): 821-827.
[12] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[13] 刘汉光, 王国强, 孟东阁, 赵寰宇. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报(工学版), 2018, 48(2): 486-491.
[14] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[15] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!