吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 181-187.doi: 10.13229/j.cnki.jdxbgxb20190967

• 材料科学与工程 • 上一篇    

硅炭黑改性玄武岩纤维增强聚酰胺6复合材料性能

李义(),黄东迪,于开锋(),梁继才,何小玲,任希彤   

  1. 吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2019-05-24 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 于开锋 E-mail:henrylee@jlu.edu.cn;yukf@jlu.edu.cn
  • 作者简介:李义(1974-),男,教授,博士. 研究方向:复合材料成型技术.E-mail:henrylee@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20170204017GX)

Performance of silica carbon black modified basalt fiber reinforced polyamide 6 composite

Yi LI(),Dong-di HUANG,Kai-feng YU(),Ji-cai LIANG,Xiao-ling HE,Xi-tong REN   

  1. College of Materials Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2019-05-24 Online:2021-01-01 Published:2021-01-20
  • Contact: Kai-feng YU E-mail:henrylee@jlu.edu.cn;yukf@jlu.edu.cn

摘要:

采用多巴胺(DOPA)溶液将硅炭黑(SiCB)分散在玄武岩纤维表面实现改性处理,提高玄武岩纤维(BF)与聚酰胺6(PA6)的界面结合性能。探究了不同SiCB含量对玄武岩纤维/聚酰胺6(BF/PA6)复合材料性能的影响。采用傅里叶红外光谱、差式扫描量热仪(DSC)和扫描电镜(SEM)对改性复合材料的微观形貌与结构进行表征,通过静力学测试对复合材料的断裂行为进行评估。SiCB的含量为2.0 g/L时,复合材料的拉伸强度和冲击强度分别提高了109.4%和89.3%。SEM结果表明,硅炭黑较好地均匀分散在BF表面,同时DCS结果表明,硅炭黑有效地降低了PA6的结晶焓,提高了PA6的结晶度。

关键词: 复合材料, 玄武岩纤维, 硅炭黑, 改性处理, 拉伸强度

Abstract:

In this study, first, basalt fiber surface was modified via silicon carbon black (SiCB) with dopamine (DOPA) solution to improve the interfacial bonding between basalt fiber and polyamide 6 (PA6). Then, the effects of different SiCB contents on the properties of basalt fiber/polyamide 6 composites were investigated. The microscopic morphology and structure of the modified BF was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The fracture behavior of the composite was evaluated by static testing. When the content of SiCB is 2.0 g/L, the tensile strength and impact strength of the composites are increased by 109.4% and 89.3%. SEM proves that the silica carbon black on the surface of BF is homogeneous. According to the DCS results, the silica carbon black effectively reduces the crystallization enthalpy of PA6 and improves the crystallinity of PA6.

Key words: composite material, basalt fiber, silicon carbon black, modification treatment, tensile strength

中图分类号: 

  • TQ327.9

图1

玄武岩纤维改性流程实验"

图2

多巴胺、BF和MBF的红外光谱图"

图3

复合材料的表观剪切黏度"

图4

拉伸标准试样件和拉伸强度和冲击强度图"

表1

PA6及其复合材料的DSC参数"

材料

结晶温度

/℃

结晶焓

/(J·g-1)

熔融温度

/℃

熔融焓

/(J·g-1)

PA6182.8102.9219.298.6
0.5SiCB/BF/PA6181.581.23220.1109.6
1.0SiCB/BF/PA6180.878.93219.0103.2
1.5SiCB/BF/PA6178.582.33220.4105.3
2.0SiCB/BF/PA6178.374.02219.8102.6
2.5SiCB/BF/PA6178.089.54220.3100.8

图5

PA6及其复合材料的结晶曲线和熔融曲线"

图6

不同硅炭黑浓度改性玄武岩纤维的SEM观察"

图7

拉伸断裂面的SEM图片"

1 Colombo C, Vergani L, Burman M. Static and fatigue characterisation of new basalt fibre reinforced composites[J]. Composite Structures, 2012, 94(3): 1165-1174.
2 谢尔盖. 玄武岩纤维的特性及其在中国的应用前景[J]. 玻璃纤维, 2005(5): 44-48.
Sergei O A. Characteristics of basalt fiber and its application prospect in China[J]. Fiber Glass, 2005(5): 44-48.
3 Elsabbagh A, Steuernagel L, Ring J. Natural Fibre/PA6 composites with flame retardance properties: Extrusion and characterisation[J]. Composites Part B: Engineering, 2017, 108: 325-333.
4 Guo Y M, Li Y, Wang S N, et al. Effect of silanetreatment on adhesion of adhesive-bonded carbon fiber reinforced nylon 6 composite[J]. International Journal of Adhesion and Adhesives, 2019, 91: 102-115.
5 Dhand V, Mittal G, Rhee K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Composites Part B: Engineering, 2015, 73: 166-180.
6 雷静, 党新安, 李建军. 玄武岩纤维的性能应用及最新进展[J]. 化工新型材料, 2007, 35(3): 9-11.
Lei Jing, Dang Xin-an, Li Jian-jun. Characteristic, application and development of basalt fiber[J]. New Chemical Materials, 2007, 35(3): 9-11.
7 Karolina M, Stanislaw K, Kamila S. Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbonfibres[J]. Journal of Composite Materials, 2019, 53(28-30): 3979-3991.
8 Lee T W, Lee S, Park S M, et al. Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites[J]. Composite Structures, 2019, 222: 110917.
9 Yu S, Oh K H, Hong S H. Effects of silanization and modification treatments on the stiffness and toughness of BF/SEBS/PA6,6 hybrid composites[J]. Composites Part B: Engineering, 2019, 173: 106922.
10 Kovačević S, Brnada S, Dubrovski P D. Analysis of the mechanical properties of woven fabrics from glass and basalt yarns[J]. Fibres and Textiles in Eastern Europe, 2015, 23(6): 83-91.
11 Pak S, Park S, Song Y S, et al. Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites[J]. Composite Structures, 2018, 193: 73-79.
12 王辉, 王军杰, 王书展, 等. POE-g-MAH改性PA6/BF复合材料的力学和摩擦磨损性能研究[J]. 塑料工业, 2017, 45(4): 36-39, 76.
Wang Hui,Wang Jun-jie, Wang Shu-zhan, et al. Effect of POE-g-MAH on the mechanical and tribological properties of polyamide 6/basalt fiber composites[J]. China Plastics Industry, 2017, 45(4): 36-39, 76.
13 Zegaoui A, Derradji M, Ma R, et al. High -performance polymeric materials with greatly improved mechanical and thermal properties from cyanate ester/benzoxazine resin reinforced by silane-treated basalt fibers[J]. Journal of Applied Polymer Science, 2018, 135: 46283.
14 Wu G M, Hung C H, You J H, et al. Surface modification of reinforcement fibers for composites by acid treatments[J]. Journal of Polymer Research, 2004, 11(1): 31-36.
15 Wang G J, Liu Y W, Guo Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface and Coatings Technology, 2007, 201(15): 6565-6568.
16 Manikandan V, Winowlin Jappes J T, Suresh Kumar S M, et al. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites[J]. Composites Part B: Engineering, 2012, 43(2): 812-818.
17 Lee J J, Nam I, Kim H. Thermal stability and physical properties of epoxy composite reinforced with silane treated basalt fiber[J]. Fibers and Polymers, 2017, 18: 140-147.
18 Mondragon G, Santamaria-Echart A, Hormaiztegui M E V, et al. Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals fromSisal fibres[J]. Journal of Polymers and the Environment, 2017, 26: 1869-1880.
19 周玉. 硅炭黑/高分子聚合物复合材料的制备及性能研究[D]. 长春:吉林大学化学学院,2017.
Zhou Yu. A study about the preparation and performance of silica carbon black/polymer composites[D]. Changchun: College of Chemistry, Jilin University, 2017.
20 Sa R, Yan Y, Wei Z H, et al. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting[J]. Applied Materials & Interfaces(ACS), 2014, 6(23): 21730-21738.
[1] 杨帆,张旭东,赵蒙,折波,邓俊楷. 基于有限元计算的形状记忆合金⁃金属玻璃复合材料变形行为[J]. 吉林大学学报(工学版), 2021, 51(1): 172-180.
[2] 慕文龙,那景新,谭伟,王广彬,申浩,栾建泽. 基于FTIR分析的CFRP-铝合金粘接接头剩余强度预测[J]. 吉林大学学报(工学版), 2021, 51(1): 139-146.
[3] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
[4] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[5] 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629.
[6] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[7] 李碧雄,廖桥,章一萍,周练,隗萍,刘侃. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版), 2019, 49(4): 1153-1161.
[8] 那景新,刘浩垒,范以撒,秦国锋,浦磊鑫. 湿热环境对车用粘接剂拉伸强度的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 822-828.
[9] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[10] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[11] 刘耀辉, 陈乔旭, 宋雨来, 沈艳东. 火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1861-1867.
[12] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[13] 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[14] 陈江义, 刘保元. 纤维断裂损伤对复合材料板中导波频散特性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[15] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!