吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (1): 118-126.doi: 10.13229/j.cnki.jdxbgxb20200728

• 交通运输工程·土木工程 • 上一篇    

基于MADYMO的大客车追尾碰撞事故乘员损伤机理

张文会(),伊静,刘委,于秋影,王连震()   

  1. 东北林业大学 交通学院,哈尔滨 150040
  • 收稿日期:2020-09-22 出版日期:2022-01-01 发布日期:2022-01-14
  • 通讯作者: 王连震 E-mail:rayear@163.com;rock510@163.com
  • 作者简介:张文会(1978-),男,副教授,博士. 研究方向:交通运输规划与管理.E-mail:rayear@163.com
  • 基金资助:
    国家自然科学基金项目(717010412);中央高校基本科研业务费专项项目(2572021DT09);黑龙江省自然科学基金项目(LH2019E007)

Injury mechanism of occupants in bus during rear-end crash based on MADYMO

Wen-hui ZHANG(),Jing YI,Wei LIU,Qiu-ying YU,Lian-zhen WANG()   

  1. School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2020-09-22 Online:2022-01-01 Published:2022-01-14
  • Contact: Lian-zhen WANG E-mail:rayear@163.com;rock510@163.com

摘要:

为使乘员在大客车追尾事故发生时可以根据不同位置进行有针对性的保护,利用有限元和多刚体动力学软件,构建了大客车模型、12个假人模型和安全带模型,并分配假人模型于大客车的不同位置。加载重力加速度、碰撞波形和相对碰撞速度等参数到仿真模型中,最终得到不同相对碰撞速度下假人的头部、胸部、腿部损伤指标值。研究结果表明,相对碰撞速度越大,乘员的头部、胸部、腿部损伤指标值越大,相对碰撞速度大于60 km/h,部分乘员的头部和胸部会受到4级或4级以上程度的严重损伤;车体前部和后部座椅上乘员的加权损伤值(WIC)较中部座椅上乘员的加权损伤值更大;靠近挡风玻璃侧乘员的WIC比同排座椅靠近过道侧乘员的WIC更大。

关键词: 交通工程, 大客车, 追尾事故, 乘员损伤, 仿真分析

Abstract:

In order to enable the occupants to carry out targeted protection according to different locations when the bus rear end collision accident occurs, the bus model, 12 dummy models and seat belt models were constructed by using the finite element analysis and rigid multi-body dynamics software. The dummy models were assigned to different seats of the bus. The gravity acceleration, impact waveform and relative impact velocity were loaded into the simulation model. The injury indexes of the dummy head, chest and leg under different relative impact velocities were finally obtained. The results show that the larger the relative impact speed is, the greater the injury index values of head, chest and leg are. When the relative collision speed is greater than 60 km/h, some occupants' head and chest in the bus will suffer serious injury of grade 4 or above. The weighted injury criteria values (WICs) of the occupants on the front and rear seats are larger than that of the occupants on the middle seat. The WIC of the occupants near the windshield side is larger than that of the occupants near the aisle side of the same row of seats.

Key words: traffic engineering, bus, rear end collision accident, occupant injury, simulation analysis

中图分类号: 

  • U491.31

表1

AIS分类级别"

AIS等级损伤程度AIS等级损伤程度
0轻微伤5垂危
1轻伤6死亡,因1个致命伤害在24 h内死亡
2中伤7死亡,因2个致命伤而死亡
3重伤,但无生命危险8死亡,因3个及以上的致命伤而死亡
4重伤,有生命危险9死亡,情况不明

表2

头部损伤和AIS对应关系"

HICAIS损伤描述损伤程度
130~5201头部眩晕无伤害
521~9002短时间意识丧失,线性骨折轻伤
901~12553意识丧失;出现凹陷性骨折中伤
1256~15754意识丧失;出现开放性骨折重伤,但无生命危险
1576~18605意识丧失;出现脑血肿重伤,有生命危险
≥18616垂危死亡或死亡垂 危

表3

胸部损伤和AIS对应关系"

AIS等级

胸部C3ms

加速度/g

胸部损伤描述损伤程度
117~371根肋骨骨折轻度损伤
238~54

有2~3根肋骨折;

胸骨骨折

中度损伤
355~68

3根以上肋骨骨折,

伴有血气胸凹陷性骨折

较重伤,无生命危险
469~79连枷胸,3根及以上肋骨骨折,伴有血气胸;胸壁组织撕裂严重伤,有生命危险
580~90

双边连枷胸、

大动脉破裂

危重伤,有生还可能
6≥90死亡最严重的伤

表4

大客车主要技术参数"

技术参数数 值技术参数数 值

长度/mm

宽度/mm

高度/mm

前轮距/mm

最高车速/(km·h—1

后轮距1/mm

14 200

2 409

3 600

2 098

100

1 860

后轮距2/mm

轴距/mm

前轮胎规格

后轮胎规格

整备质量/kg

1860

6050

295/80 R22.5

295/80 R22.5

13 240

图1

大客车模型"

图2

HybridⅢ50百分位男性假人模型"

表5

假人身体主要部位质量"

身体部位质量/kg身体部位质量/kg
头部3.800右下臂1.246
颈部1.220腹部0.400
右锁骨0.250骨盆7.620
左锁骨0.250骶骨1.595
肩胛骨0.200左大腿8.801
胸骨上部0.750右大腿8.801
胸部1.200左小腿3.039
左上臂1.652右小腿3.039
右上臂1.652左脚1.618
左下臂1.246右脚1.618

图3

有限元安全带材料特性"

图4

混合式安全带模型"

图5

车内座椅编号"

图6

假人定位模型"

图7

不同相对碰撞速度下大客车加速度曲线"

表6

不同相对碰撞速度下假人头部HIC36ms"

Nv/(km·h-1
20304050607080
1379432151873110321523
32214227762382510241242
72627041382193112481678
10181992255614759231342
17221131954287848531121
1825831316295499481452
3112107200465429513973
3215152243379505623897
37222134045957869771572
38171163152425987621498
473331158932172314231724
482826140252182212371559

图8

不同座椅位置上假人头部HIC36ms"

图9

60 km/h部分座椅位置上假人头部合成加速度"

图10

不同相对碰撞速度下部分位置假人头部损伤HIC36ms"

表7

不同相对碰撞速度下假人胸部C3ms(g)值"

Nv/(km·h-1
20304050607080
112.419.031.753.065.085.0126.3
320.717.741.052.769.598.8114.4
714.019.930.961.557.774.679.5
1012.420.439.348.359.474.484.3
1714.517.432.956.563.587.998.7
1813.920.542.161.675.584.1106.4
3124.619.240.346.851.862.369.1
3219.728.631.746.552.274.385.1
3718.019.220.541.952.765.177.8
3813.325.843.075.163.4116.3136.9
4730.532.065.579.295.1111.6127.9
4824.228.848.353.471.883.990.7

图11

60 km/h不同座椅位置上假人胸部损伤"

图12

60 km/h部分座椅假人胸部合成加速度"

图13

不同相对碰撞速度下部分位置假人胸部损伤C3ms(g)"

表8

不同相对碰撞速度下假人左腿FFC (kN)"

Nv/(km·h-1
20304050607080
11.122.143.154.175.186.207.21
30.872.263.665.056.447.849.23
71.212.223.224.235.246.247.33
102.353.664.986.297.608.9210.23
171.513.174.826.488.139.7911.44
180.722.143.564.986.407.829.24
310.911.812.713.624.525.426.32
321.432.383.334.285.236.187.13
371.221.722.222.723.223.724.22
381.522.293.063.834.595.366.13
471.231.92.563.233.894.565.22
480.972.183.394.615.827.038.24

表9

不同相对碰撞速度下假人右腿FFC (kN)"

Nv/(km·h-1
20304050607080
11.052.012.963.924.875.826.78
30.972.534.105.667.228.7810.34
71.262.313.354.405.456.497.62
102.143.334.535.726.928.119.31
171.453.044.636.227.809.3910.98
180.862.574.275.987.689.3811.09
311.001.992.983.984.975.966.95
321.332.213.103.984.865.756.63
371.341.892.442.993.544.094.64
381.472.222.963.714.465.205.95
471.281.972.663.354.054.745.43
481.112.493.875.256.638.019.39

图14

60 km/h不同座椅位置上假人腿部受力状况"

表10

不同相对碰撞速度下假人的加权损伤值"

Nv/(km·h-1
20304050607080
10.220.360.570.840.991.301.75
30.280.340.620.810.891.361.59
70.240.390.590.970.961.251.45
100.210.370.610.780.901.181.35
170.230.290.550.910.811.351.54
180.230.360.600.840.661.231.50
310.300.300.560.660.770.981.11
320.260.370.590.680.911.131.30
370.260.340.480.700.720.961.25
380.220.420.691.071.031.621.91
470.380.510.811.081.251.481.90
480.310.400.730.791.121.361.51

图15

60 km/h不同座椅位置上假人WIC"

1 杨亚东. 基于突变理论的道路交通事故致因机理研究[J]. 交通工程, 2018, 18(3): 40-45.
Yang Ya-dong. Study on the cause mechanism of road traffic accidents based on catastrophe theory[J]. Traffic Engineering, 2018, 18(3): 40-45.
2 Chen C, Liu X M, Chen H H. A rear-end collision risk evaluation and control scheme using a bayesian network model[J]. Transactions on Intelligent Transportation Systems, 2019, 20(1): 264-284.
3 江亮,贺宜.电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报: 工学版, 2019, 49(4): 1107-1113.
Jiang Liang, He Yi. Analysis of risky driving behavior and accident influencing factors of electric two-wheeled vehicles[J]. Journal of Jilin University( Engineering and Technology Edition), 2019, 49(4): 1107-1113.
4 张文会, 于秋影, 沈航先. 基于SEM的高速公路事故路段行车风险因素辨识[J]. 森林工程, 2021, 37(2): 95-103.
Zhang Wen-hui, Yu Qiu-ying, Shen Hang-xian. SEM-based identification of driving risk factors in highway accident sections[J]. Forest Engineering,2021, 37(2): 95-103.
5 兰凤崇,王俊峰,曾子聪,等. 人-车碰撞事故再现及头部损伤生物力学分析[J]. 重庆理工大学学报: 自然科学, 2019, 33(8): 8-15.
Lan Feng-chong, Wang Jun-feng, Zeng Zi-cong, et al. Reconstruction of human vehicle collision and biomechanical analysis of head injury[J]. Journal of Chongqing University of Technology: Natural Science, 2019,33(8): 8-15.
6 Ge Ru-hai, Zhang Su-xiu, Hong Liang. Optimization of front-row occupant restraint system with NSGA-Ⅱ genetic algorithm[J]. Automotive Engineering, 2017, 39(12):1382-1389.
7 陈吉清,杜天亚,兰凤崇,等. 汽车碰撞中乘员腹部损伤机理及生物力学响应研究进展[J]. 汽车工程学报, 2015, 5(2): 79-89.
Chen Ji-qing, Du Tian-ya, Lan Feng-chong, et al. Research progress on mechanism and biomechanical response of occupant abdominal injury in vehicle collision[J]. Acta Automotive Engineering, 2015, 5(2): 79-89.
8 Jost R, Nurick G N. Finite element modelling of the human body in vehicle side impact[J]. International Journal of Crashworthiness, 1999, 4(1):31-37.
9 Xu J J, Wali B H, Li X B, et al. Injury severity and contributing driver actions in passenger vehicle-truck collisions[J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3542.
10 Zou Tie-fang, Yu Zhi, Cai Ming, et al. Car-pedestrian accident reconstruction based on Pc-Crash[J]. Journal of Vibration and Shock, 2011, 30(3): 215-219.
11 周华,彭一峻,刘卓异,等. 约束系统对不同体型女性驾驶人的保护研究[J]. 中国安全科学学报, 2019, 29(4): 76-82.
Zhou Hua, Peng Yi-jun, Liu Zhuo-yi, et al. Study on the protection of restraint system for female drivers with different body sizes[J]. Chinese Journal of safety Sciences, 2019, 29(4): 76-82.
12 周鸣昊,李傲,谷先广. 考虑多种工况的乘员约束系统可靠性优化设计[J]. 合肥工业大学学报: 自然科学版, 2019, 42(7): 888-894.
Zhou Ming-hao, Li Ao, Gu Xian-guang. Reliability optimization design of occupant restraint system considering various working conditions[J]. Journal of Hefei University of Technology(Natural Science Edition), 2019, 42(7): 888-894.
13 张鹏,张道文,肖凌云,等. 男性行人与SUV正碰后的运动形态及损伤研究[J]. 中国安全科学学报, 2019, 29(1): 25-30.
Zhang Peng, Zhang Dao-wen, Xiao Ling-yun, et al. Study on the movement pattern and injury of male pedestrian after frontal collision with SUV[J]. Chinese Journal of Safety Sciences, 2019, 29(1): 25-30.
14 王波, 何洋扬, 聂冰冰,等. 底部爆炸条件下车内乘员的腹部损伤[J]. 吉林大学学报:工学版, 2021, 51(3): 792-798.
Wang Bo, He Yang-yang, Nie Bing-bing, et al. Abdominal injury of occupants in a car under the condition of bottom explosion[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 792-798.
15 洪汉池,黄红武. 客车侧翻碰撞中安全带对乘员损伤的影响分析[J]. 重庆大学学报, 2016, 39(3): 140-146.
Hong Han-chi, Huang Hong-wu. Analysis of the impact of seat belt on occupant injury in rollover crash[J]. Journal of Chongqing University, 2016, 39(3): 140-146.
16 曹立波,欧阳志高,徐哲,等. 可逆约束系统参数匹配优化研究[J]. 机械工程学报, 2016, 52(10): 133-141.
Cao Li-bo, Ouyang Zhi-gao, Xu Zhe, et al. Study on parameter matching optimization of reversible constrained systems[J]. Journal of Mechanical Engineering, 2016, 52(10): 133-141.
[1] 曲大义,黑凯先,郭海兵,贾彦峰,王韬. 车联网环境下车辆换道博弈行为及模型[J]. 吉林大学学报(工学版), 2022, 52(1): 101-109.
[2] 李明,薛庆峰,张可欣,吕然,韦长华. 电动汽车热泵空调系统性能分析[J]. 吉林大学学报(工学版), 2021, 51(6): 1943-1952.
[3] 刘志伟,刘建荣,邓卫. 基于潜在类别的无人驾驶汽车选择行为[J]. 吉林大学学报(工学版), 2021, 51(4): 1261-1268.
[4] 徐进,潘存书,符经厚,刘俊,王郸祁. 典型道路场景以及场景切换时的速度行为特性[J]. 吉林大学学报(工学版), 2021, 51(4): 1331-1341.
[5] 查伟雄,蔡其燕,李剑,严利鑫. 边路车辆出入条件下城市干线信号协调相位差优化[J]. 吉林大学学报(工学版), 2021, 51(2): 565-574.
[6] 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396.
[7] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[8] 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517.
[9] 李俊烨, 乔泽民, 杨兆军, 张心明. 介观尺度下磨料浓度对磨粒流加工质量的影响[J]. 吉林大学学报(工学版), 2017, 47(3): 837-843.
[10] 孙轶轩, 邵春福, 岳昊, 朱亮. 基于SVM灵敏度的城市交通事故严重程度影响因素分析[J]. 吉林大学学报(工学版), 2014, 44(5): 1315-1320.
[11] 李志斌, 刘攀, 金茂菁, 徐铖铖. 高速公路常发拥堵路段追尾事故风险实时预测[J]. 吉林大学学报(工学版), 2013, 43(06): 1482-1487.
[12] 姚亮, 初亮, 周飞鲲, 刘明辉, 张永生, 魏文若. 纯电动轿车制动能量回收节能潜力仿真分析[J]. 吉林大学学报(工学版), 2013, 43(01): 6-11.
[13] 王登峰, 季枫, 陈书明, 苏丽俐, 郝赫. 多轴重型汽车气动制动防抱死系统性能仿真与试验[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 7-12.
[14] 陈晋市, 元万荣, 袁华山, 刘昕晖, 王展. 基于AMESim的滑移装载机自动调平系统[J]. , 2012, (06): 1390-1395.
[15] 陈立军, 孙博, 薛宏, 刁建超. 燃烧控制系统H鲁棒控制器设计 [J]. , 2012, (03): 726-731.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!