吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 1943-1952.doi: 10.13229/j.cnki.jdxbgxb20200656
• 车辆工程·机械工程 • 上一篇
Ming LI1(),Qing-feng XUE2,Ke-xin ZHANG1,Ran LYU1,Chang-hua WEI3
摘要:
搭建了电动汽车热泵空调系统仿真模型和性能仿真分析平台,分析了热泵空调系统在不同模式下的性能,并采用试验结果对仿真模型进行验证。结果表明:试验得到压缩机功率、换热量、系统COP值与对应的仿真值之间的最大误差为4%~10.09%。在制冷模式和制热模式下,随着压缩机转速的增大,压缩机功率逐渐增大,换热量逐渐增大,系统COP逐渐减小。此外,研究了冷凝器、蒸发器进风风量、进风温度、进风方式等因素对制冷模式和制热模式下系统性能的影响,结果表明,制冷时采用大风量有利于提高制冷量,进风温度的影响取决于工况特征,而采用部分进风方式更有利于系统制热节能。
中图分类号:
1 | Zhao Gang-qi. Advances on air conditioning and heat pump system in electric vehicles——a review[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 754-764. |
2 | 张天时,宋东鉴,高青,等.电动汽车动力电池液体冷却系统构建及其工作过程仿真[J].吉林大学学报:工学版,2018,48(2):387-397. |
Zhang Tian-shi, Song Dong-jian, Gao Qing, et al. Electric vehicle power battery liquid cooling system construction and working process simulation[J]. Journal of Jilin University(Engineering and Technology Edition), 2018,48(2): 387-397. | |
3 | 闵海涛,曹云波,曾小华,等. 电动汽车空调系统建模及对整车性能的影响[J]. 吉林大学学报:工学版,2009,39():53-57. |
Min Hai-tao, Cao Yun-bo, Zeng Xiao-hua, et al. Modeling of air conditioning system of electric vehicle and its influence on vehicle performance[J]. Journal of Jilin University(Engineering and Technology Edition), 2009,39(Sup.1): 53-57. | |
4 | 轩小波,陈斐,戎森杰. 电动汽车用热泵空调系统制热性能的试研究[J]. 制冷与空调, 2017, 17(3): 47-50, 40. |
Xuan Xiao-bo, Chen Fei, Rong Sen-jie. Experimental study on heating performance of heat pump air conditioning system for electric vehicle[J]. Refrigeration and Air-Conditioning, 2017, 17(3): 47-50, 40. | |
5 | Park S H, Kim S C. Heating performance characteristics of high-voltage ptc heater for an electric vehicle[J]. Energies, 2017, 10(10): 1494. |
6 | Zhang K, Li M, Yang C. et al. Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system[J]. Journal of Thermal Science, 2020, 29(2):408-422. |
7 | Tang X, Guo Q, Li M, et al. Heating performance characteristics of an electric vehicle heat pump air conditioning system based on exergy analysis[J]. Energies, 2020, 13(11):2868. |
8 | Li Ming,Cui Song, Huang Hai-zhen, et al. Effect of pipes in heat pump system on electric vehicle energy saving[J]. International Journal of Green Energy, 2020, 17(11): 1-10. |
9 | 彭发展,魏名山,黄海圣,等. 环境温度对电动汽车热泵空调系统性能的影响[J]. 北京航空航天大学学报, 2014, 40(12):1741-1746. |
Peng Fa-zhan, Wei Ming-shan, Huang Hai-sheng, et al. Effect of ambient temperature on performance of heat pump air conditioning system for electric vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12):1741-1746. | |
10 | 张文嵘,刘丽娜,钱程,等. 热泵型纯电动汽车空调系统特性[J]. 制冷学报, 2018, 39(6):109-114. |
Zhang Wen-rong, Liu Li-na, Qian Cheng, et al. Characteristics of air conditioning system for heat pump electric vehicle[J]. Journal of Refrigeration, 2018, 39(6):109-114. | |
11 | 彭庆丰,赵韩,陈祥吉,等. 电动汽车新型热泵空调系统的设计与试验研究[J]. 汽车工程, 2015, 37(12): 1467-1470, 1432. |
Peng Qing-feng, Zhao Han, Chen Xiang-ji, et al. Design and experimental study of new heat pump air conditioning system for electric vehicle[J]. Automotive Engineering, 2015, 37(12): 1467-1470, 1432. | |
12 | 丁玮, 孙强, 徐庆春. AMESim仿真技术在汽车空调制冷系统中的应用[J]. 汽车实用技术, 2015, 39(8): 74-77. |
Ding Wei, Sun Qiang, Xu Qing-chun. Application of AMESim simulation technology in automobile air conditioning refrigeration system[J]. Automobile Applied Technology, 2015, 39(8):74-77. | |
13 | 方继华. 基于微通道平行流蒸发器的电动汽车空调系统性能研究[D]. 上海:上海交通大学机械与动力工程学院, 2015. |
Fang Ji-hua. Performance study of electric vehicle air conditioning system based on microchannel parallel flow evaporator[D]. Shanghai:School of Mechanical Engineering, Shanghai Jiao Tong University, 2015. | |
14 | 韩联进,巫江虹,薛志强. 电动客车热泵空调系统仿真与改进[J]. 浙江大学学报:工学版, 2018, 52(4): 641-648. |
Han Lian-jin, Wu Jiang-hong, Xue Zhi-qiang. Simulation and improvement of heat pump air conditioning system for electric bus[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(4): 641-648. | |
15 | 钟会球. 电动汽车空调系统仿真与实验研究[D]. 杭州:浙江大学能源工程学院, 2012. |
Zhong Hui-qiu. Simulation and experimental study on air conditioning system of electric vehicle[D]. Hangzhou: College of Energy Engineering, Zhejiang University, 2012. | |
16 | Chang Y J, Wang C C. A generalized heat transfer correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer, 1997, 40(3): 533-544. |
17 | Kandlikar S G, Steinke M E. Predicting heat transfer during flow boiling in minichannels and microchannels[J]. Ashrae Transactions, 2003, 109(1): 1-9. |
18 | Akers W W, Deans A, Crosser O K. Condensation heat transfer within horizontal tubes[J]. Chemical Engineering Progress Symposium Series, 1959, 55(29): 171-176. |
19 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1):3-22. |
20 | Wile D D. The measurement of expansion valve capacity[J]. Refrigeration Engineering, 1935(8): 1-81. |
[1] | 李浩,陈浩. 考虑充电排队时间的电动汽车混合交通路网均衡[J]. 吉林大学学报(工学版), 2021, 51(5): 1684-1691. |
[2] | 王聪,马彦,王国光. 电动汽车充电站内的实时最优功率分配[J]. 吉林大学学报(工学版), 2021, 51(4): 1490-1495. |
[3] | 宋强,孙丹婷,章伟. 纯电动车机械式自动变速器换挡非线性建模及控制[J]. 吉林大学学报(工学版), 2021, 51(3): 810-819. |
[4] | 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396. |
[5] | 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652. |
[6] | 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644. |
[7] | 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635. |
[8] | 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547. |
[9] | 徐亮, 兰进, 王明森, 高建民, 李云龙. 旋度对旋转冲击射流传热特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1483-1491. |
[10] | 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359. |
[11] | 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517. |
[12] | 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387-397. |
[13] | 孙文, 王庆年, 王军年. 基于横摆力矩控制的电动轮汽车转弯节能控制[J]. 吉林大学学报(工学版), 2018, 48(1): 11-19. |
[14] | 邵赛, 毕军, 关伟. 基于电动汽车的动态需求车辆路径问题[J]. 吉林大学学报(工学版), 2017, 47(6): 1688-1695. |
[15] | 李俊烨, 乔泽民, 杨兆军, 张心明. 介观尺度下磨料浓度对磨粒流加工质量的影响[J]. 吉林大学学报(工学版), 2017, 47(3): 837-843. |
|