吉林大学学报(工学版)

• • 上一篇    下一篇

一类非线性不确定中立型系统的鲁棒自适应滑模控制

王岩青1,2,姜长生1   

  1. 1.中国人民解放军理工大学 理学院,南京 211101; 2.南京航空航天大学 自动化学院,南京 210016
  • 收稿日期:2006-07-16 修回日期:2006-09-26 出版日期:2007-07-01 发布日期:2007-07-01
  • 通讯作者: 王岩青

Robust adaptive sliding mode control design for a class of nonlinear uncertain neutral type systems

Wang Yan-qing1,2, Jiang Chang-sheng1   

  1. 1.Institute of Sciences, PLA University of Science and Technology, Nanjing 211101,China; 2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2006-07-16 Revised:2006-09-26 Online:2007-07-01 Published:2007-07-01
  • Contact: Wang Yan-qing

摘要: 针对一类匹配非线性不确定中立型时滞系统的鲁棒镇定问题,利用Lyapunov稳定性理论,提出了一种能渐近稳定系统的自适应滑模控制器。基于滑模控制技术,确保了该控制器能驱赶系统状态达到事先指定的滑动超平面,从而获得想要的动态性能。一但系统动态达到滑动运动阶段,系统对不确定是不敏感的。自适应技术的应用克服了不确定的未知上界,并能满足可达条件能。最后,给出的一个仿真例子证明了该自适应滑模控制器的有效性,从而保证了闭环系统的全局渐近稳定性。

关键词: 自动控制技术, 中立型系统, 自适应控制, 滑模控制

Abstract: The problem of robust stabilization for a class of nonlinear uncertain neutral type systems is investigated in this paper. By applying the Lyapunov stability theorem, a adaptive sliding mode controller (ADSMC) is developed. Based on sliding mode control technique, the proposed controller can drive the systems' states into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the dynamics of system reach the sliding plane, the proposed controlled system is insensitive to uncertainty. The use of adaptive technique is to overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Finally, a numerical example is given to verify the validity of the developed ADSMC, globally asymptotic stability is guaranteed for the proposed control scheme.

Key words: automatic control technology, neutral type systems, adaptive control, sliding mode control

中图分类号: 

  • TP273
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[5] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[6] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[7] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[8] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[9] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[10] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[11] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[12] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[13] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[14] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[15] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!