›› 2012, Vol. 42 ›› Issue (04): 1003-1007.

• 论文 • 上一篇    下一篇

基于反馈增益反步法的非完整约束移动机器人路径跟踪控制

贾鹤鸣1, 宋文龙1, 陈子印2   

  1. 1. 东北林业大学 机电工程学院, 哈尔滨 150040;
    2. 哈尔滨工程大学 自动化学院, 哈尔滨 150001
  • 收稿日期:2011-06-06 出版日期:2012-07-01 发布日期:2012-07-01
  • 通讯作者: 宋文龙(1973-),男,教授,博士生导师.研究方向:林业工程自动化、智能控制及检测.E-mail:wlsong139@126.com E-mail:wlsong139@126.com
  • 基金资助:
    教育部新世纪优秀人才支持计划项目(NCET-10-0279);国家自然科学基金项目(30972424).

Path-following controller for non-holonomic mobile robots based on feedback gain backstepping

JIA He-ming1, SONG Wen-long1, CHEN Zi-yin2   

  1. 1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China;
    2. College of Automation, Harbin Engineering University, Harbin 150001, China
  • Received:2011-06-06 Online:2012-07-01 Published:2012-07-01

摘要: 为实现非完整约束轮式机器人的路径跟踪控制,采用虚拟向导方法建立跟踪误差方程,基于李亚普诺夫稳定性理论,设计了一种基于反馈增益的反步法控制器,既能通过控制反馈增益的调节补偿机器人动态误差模型中的非线性项对系统的影响,又能避免传统反步法控制器中存在虚拟控制的高阶导数的问题。仿真结果表明:设计的控制器参数易于调节,可实现轮式移动机器人对任意曲线路径的精确跟踪。

关键词: 自动控制技术, 轮式移动机器人, 路径跟踪控制, 非完整约束, 反步法, 反馈增益

Abstract: In order to implement the path following control of wheeled mobile robot with non-holonomic constraint, the tracking error equations are established according to the virtual target method. Based on Lyapunov stability theorem, the backstepping method is designed using feedback gain technique. By tuning of the controller's feedback gain, the nonlinear terms in the error dynamic model can be compensated without direct use of nonlinear cancellation. This can also avoid the existence of high-order derivative of the predefined virtual control variable which is different from the traditional backstepping technique. Simulation results show that the parameters of the controller are easy to be adjusted, and can make wheeled mobile robot to track the desired arbitrary path precisely.

Key words: automatic control technology, wheeled mobile robot, path following control, non-holonomic constraint, backstepping, feedback gain

中图分类号: 

  • TP13
[1] 韩光信. 控制受限的非完整轮式移动机器人运动控制研究.长春:吉林大学通信工程学院, 2009. Han Guang-xin. Study on motion control for nonholonomic wheeled mobile robots with control input constraints. Changchun:Jilin University,College of Communication Engineering, 2009.
[2] 马海涛.非完整轮式移动机器人的运动控制.合肥:中国科学技术大学, 2009. Ma Hai-tao. The motion control of nonholonomic wheeled mobile robots. Hefei:University of Science and Technology of China, 2009.
[3] 韩光信,陈虹,马苗苗,等. 约束非完整移动机器人轨迹跟踪的非线性预测控制[J]. 吉林大学学报:工学版,2009, 39(1):177-181. Han Guang-xin,Chen Hong,Ma Miao-miao,et al. Nonlinear model predictive control of trajectory tracking for non-holonomic mobile robots with constraints[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(1):177-181.
[4] Jiang Zhong-ping, Nijmeijer Henk. Tracking control of mobile robots:a case study in backstepping[J]. Automatica,1997,33(7):1393-1399.
[5] Jiang Z P, Nijmeijer H. A recursive technique for tracking control of nonholonomic systems in chained form[J]. IEEE Transactions on Automatic Control,1999,44(2):265-279.
[6] 董文杰,霍伟.链式系统的轨迹跟踪控制[J]. 自动化学报,2000,26(3):310-316. Dong Wen-jie, Huo Wei. Trajectory tracking control of chained systems[J]. Acta Automatica Sinica, 2000, 26(3):310-316.
[7] Pourboghrat Farzad,Karlsson Mattias P. Adaptive control of dynamic mobile robots with nonholonomic constraints[J]. Computer and Electrical Engineering,2002,28(1):241-253.
[8] Oriolo G, de Luca A, Vendittelli M. WMR control via dynamic feedback linearization:design, implementation, and experimental validation[J]. IEEE Transactions on Control System Technology, 2002,10(6):835-852.
[9] 方浩,窦丽华,陈杰. 轮式移动机器人滑移量重建与滑移补偿控制[J]. 控制与决策,2010,25(5):701-705. Fang Hao, Dou Li-hua, Chen Jie. Sliding reconstruction and anti-sliding control of wheeled mobile robots[J]. Control and Decision, 2010,25(5):701-705.
[10] Casalino G, Aicardi M, Bicchi A, et al. Closed loop steering and path-following for unicycle-like vehicles:a simple lyapunov function based approach[J]. IEEE Robotics and Automation Magazine, 1995, 2(1):27-35.
[11] Micaelli A, Samson C. Trajectory tracking for unicycle-type and two-steering wheels mobile robots. Technical Report No 2097, INRIA, Sophia-Antipolis, France, 1993.
[12] Li Zhen, Jing Sun, Soryeok Oh. Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels[J]. Automatica, 2009, 45(7):1649-1658.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!