吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 387-391.doi: 10.13229/j.cnki.jdxbgxb201402017
葛长江1, 葛美辰2, 梁平1, 张志辉1, 任露泉1
GE Chang-jiang1, GE Mei-chen2, LIANG Ping1, ZHANG Zhi-hui1, REN Lu-quan1
摘要:
以长耳鸮的翅膀为模本构建仿生翼型,并在此基础上构建没有凹口的仿生缝翼及仿生多段翼型。利用快速成型系统制作相应的准二维试验模型,并在低湍流度的风洞内进行试验,结果显示:在攻角小于5°时,仿生翼型的升力系数更大,而在攻角大于5°时,具有仿生缝翼的仿生多段翼型的升力系数更优。同时,仿生多段翼型中仿生缝翼能提高失速角和最大升力系数,而且还能延迟升力系数曲线斜率的下降,从而在一定攻角范围内阻止前缘分离的发生。在低雷诺数下的绕翼烟线显示了仿生翼型的前缘分离,但在相同工况下的仿生多段翼型的流场中没有出现前缘分离。这个优点也许可以被用在未来的前缘缝翼的设计中。
中图分类号:
[1] Soderman P T, Kafyeke F, Boudreau J, et al. Airframe noise study of a Bombardier CRJ-700 aircraft model in the NASA Ames 7-by 10-foot wind tunnel[J]. International Journal of Aeroacoustics, 2004, 3(1): 1-42.[2] Chow L C, Mau K, Remy H. Landing gear and high lift devices airframe noise research[C]//AIAA Paper, 2002-2408.[3] Zhaokai Ma. Slat noise attenuation using acoustic liner[C]//AIAA Paper, 2005-3009.[4] Smith M G, Chow L C, Molin N. Attenuation of slat trailing edge noise using slat gap acoustic liners[C]//AIAA Paper, 2006-2666.[5] Choudhari M, Khorrami M R, Lockard D P. Slat cove noise modeling: a posteriori analysis of unsteady RANS simulations[C]//AIAA Paper, 2002 -2468.[6] Takeda K, Ashcroft G B, Zhang X. Unsteady aerodynamics of slat Cove flow in a high-lift device configuration[C]//AIAA Paper, 2001-0706.[7] 徐成宇, 钱志辉, 刘庆萍, 等. 基于长耳鸮翼前缘的仿生耦合翼型气动性能[J].吉林大学学报: 工学版, 2010, 40 (1): 108-112. Xu Cheng-yu, Qian Zhi-hui, Liu Qing-ping, et al. Aerodynamic performance of bionic coupled foils based on leading edge of long-eared owl wing[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (1): 108-112.[8] Meseguer J, Franchini S, Perez-Grande I, et al. On the aerodynamics of leading-edge high-lift devices of avian wings[J]. Proc Inst Mech Eng G, 2005, 219: 63-68.[9] van Der Burg J W, Eliasson P, Delille T, et al. Geometric installation and deformation effects in high-lift flows[C]//AIAA Journal, 2009, 47: 60-70.[10] Rudnik R. Stall behaviour of the eurolift high-lift configurations[C]//AIAA Paper, 2008-836.[11] Graham R R. The silent flight of owls[J]. J Roy Aero Soc, 1934, 38: 837-843.[12] Lilley G M. A study of the silent flight of the owl[C]//AIAA Paper, 1998-2340.[13] Nachtigall W, Kempf B. Vergleichende untersuchungen zur flugbiologischen funktion des daumenfittichs (Alula spuria) bei vgeln[J]. Z vergl Physiologie, 1971, 71: 326-341.[14] Liu T S, Kuykendoll K, Rhew R, et al. Avian Wing Geometry and Kinematics[C]//AIAA Journal, 2006, 44: 954-963.[15] Klan S, Bachmann T, Klaas M, et al. Experimental analysis of the flow field over a novel owl based airfoil[J]. Exp Fluids, 2009, 46: 975-989. |
[1] | 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792. |
[2] | 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798. |
[3] | 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820. |
[4] | 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211. |
[5] | 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378. |
[6] | 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184. |
[7] | 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193. |
[8] | 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551. |
[9] | 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986. |
[10] | 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545. |
[11] | 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756. |
[12] | 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384. |
[13] | 张钦国, 秦四成, 杨立光, 马润达, 刘宇飞, 李武. 基于虚拟风洞的装载机动力舱热环境预测分析[J]. 吉林大学学报(工学版), 2016, 46(1): 50-56. |
[14] | 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862. |
[15] | 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868. |
|