吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1373-1378.doi: 10.13229/j.cnki.jdxbgxb201705007

• • 上一篇    下一篇

地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟

王宏朝, 单希壮, 杨志刚   

  1. 同济大学 上海地面交通工具风洞中心,上海 201804
  • 收稿日期:2016-05-28 出版日期:2017-09-20 发布日期:2017-09-20
  • 通讯作者: 单希壮(1961-),男,研究员,博士.研究方向:空气动力学.E-mail:xizhuang.shan@sawtc.com
  • 作者简介:王宏朝(1987-),男,博士研究生.研究方向:整车热管理.E-mail:whcjordan123@163.com
  • 基金资助:
    国家自然科学基金项目(11502171); 国家国际技术合作专项项目(2014DFA10610)

Numerical simulation of the influence of ground effect simulation on vehicle cooling system experiment in climate wind tunnel

WANG Hong-chao, SHAN Xi-zhuang, YANG Zhi-gang   

  1. Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China
  • Received:2016-05-28 Online:2017-09-20 Published:2017-09-20

摘要: 针对目前环境风洞普遍缺少地面模拟的情况,通过数值模拟技术,建立1∶1环境风洞模型及整车模型,分析了地面效应对车辆冷却系统环境风洞试验的影响。结果表明:环境风洞在引入地面模拟后,车身底部的流场分布发生变化,主要表现在地面边界层的厚度减少,通过车身底部的空气流速增大,由此降低了发动机舱冷却气流出口的压力,使得通过散热器的冷却空气质量流量增加1.2%左右。

关键词: 车辆工程, 地面效应模拟, 环境风洞, 冷却系统, 数值模拟

Abstract: Currently climate wind tunnel lacks the information of ground simulation. To overcome this problem, based on numerical simulation, a 1∶1 scaled model of the climate wind tunnel and passenger car was created. Then, the ground effect on the vehicle cooling system experiment in climate wind tunnel was investigated. Results indicate that, the introduction of a single moving belt leads to the difference of the flow field distribution in the vehicle's underbody. The thickness of the ground boundary layer decreases and the underbody airflow velocity increases accordingly, which reduces the total pressure of the cooling airflow outlet, resulting in the mass airflow passing through the radiator increases by approximately 1.2%.

Key words: vehicle engineering, ground effect simulation, climate wind tunnel, cooling system, numerical simulation

中图分类号: 

  • U467
[1] 庞加斌,刘晓辉,陈力,等. 汽车风洞试验中的雷诺数、阻塞和边界效应问题综述[J].汽车工程,2009,31(7):609-615.
Pang Jia-bin, Liu Xiao-hui, Chen Li, et al. A review on Reynolds number, blockage and boundary layer effects in automotive wind tunnel tests[J]. Automobile Engineering, 2009, 31(7):609-615.
[2] 杨志刚,丁宁,李启良,等.移动带系统升力实验与数值研究[J].同济大学学报:自然科学版,2013,41(6):900-903.
Yang Zhi-gang, Ding Ning, Li Qi-liang, et al. Experimental and numerical studies on moving-belt system lift force[J]. Journal of Tongji University (Natural Science), 2013,41(6):900-903.
[3] 张英朝,李杰,张喆,等.汽车风洞试验段尺寸参数对试验的影响[J].吉林大学学报:工学版,2010,40(2):346-350.
Zhang Ying-chao, Li Jie, Zhang Zhe, et al. Effect of wind tunnel test section geometry on test result[J]. Journal of Jilin University (Engineering and Technology Edition), 2010,40(2):346-350.
[4] Cogotti A. The new moving ground system of the pininfarina wind tunnel[C]∥SAE Technical Paper,2007-01-1044.
[5] Hucho W H. Aerodynamics of road vehicles[J]. Annual Review of Fluid Mechanics, 1987 , 25 (1) :485-537.
[6] SAE J2777, 2007-01.SAE standards committee-recommended best practice for climatic wind tunnel correlation[S].
[7] Hucho W H, Janssen L J, Schwartz G. The wind tunnel's ground plane boundary layer-its interference with the flow underneath cars[C]∥Social Automotive Engineering, 1975: 750066.
[8] Carr G W, Hassell T P. A simple device for reducing wind-tunnel boundary layer thickness[J].MIRA-Bulletin, 1968(5):12-16.
[9] Christoffer L, Tim W, Lennart L. Effects of ground simulation on the aerodynamic coefficients of a production car in yaw conditions[C]∥Social Automotive Engineering, 2010: 2010-01-0755.
[10] Cogotti A. Ground effect simulation for full-scale cars in the pininfarina wind tunnel[C]∥Social Automotive Engineering, 1995: 950996.
[11] Dimitriou I, Garry K P. Use of a narrow belt for moving ground simulation and its effects on the aerodynamic forces generatedon a formula-1 car[C]∥Social Automotive Engineering, 2002: 2002-01-3342.
[12] Catalano P, Amato M. An evaluation of RANS turbulence modeling for aerodynamic applications[J]. Aerospace Science and Technology, 2003, 7(7):493-509.
[13] Regin F, Suzuki M. A numerical analysis on air-cooling performance of passenger cars[C]∥Social Automotive Engineering, 2010: 2010-01-0554.
[14] Incropera F P ,Dewitt D. Fundamentals of Heat and Mass Transfer[M].Manhattan:John Wiley & Sons, 2011:410-411.
[15] Khaled M, Mangi F, Hage H E, et al. Fan air flow analysis and heat transfer enhancement of vehicle underhood cooling system-towards a new control approach for fuel consumption reduction[J].Applied Energy, 2012, 91 (1):439-450.
[16] Mahmoud K, Fabien H, Hassan P. Temperature and heat flux behavior of complex flows in car underhood compartment[J].Heat Transfer Engineering, 2010, 31(13):1057-1067.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[15] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!