吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 494-500.doi: 10.13229/j.cnki.jdxbgxb201502024
段兴旺,刘建生
DUAN Xing-wang,LIU Jian-sheng
摘要: 利用Gleeble-1500D热力模拟试验机,对316LN钢进行温度为950~1200 ℃,应变速率分别为0.005、0.05、0.5 和 1 s-1的热力模拟试验。借助扫描电镜(SEM)对断口进行观察,研究316LN钢的高温塑性及高温断裂机制。结果表明:316LN钢高温断裂为韧性断裂,随着温度和应变速率的增加,韧窝尺寸增大,深度增加,塑性增加。同时,采用回归方法构建了断裂应变、塑性指标(延伸率和断面收缩率)分别与变形条件(温度和应变速率)的关系模型,应用这些模型可以计算一定条件下316LN钢的断裂应变、延伸率和断面收缩率,对制定316LN钢的锻造工艺有一定的指导作用。
中图分类号:
[1] 潘品李, 钟约先, 马庆贤,等. 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报,2011, 18(5): 13-18. Pan Pin-li, Zhong Yue-xian, Ma Qing-xian, et al. Research on the dynamic recrystallization behavior of 316LN steel under multi-pass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18. [2] 陈明明,何文武,刘艳光,等. 316LN奥氏体不锈钢亚动态再结晶行为的研究[J].锻压装备与制造技术,2010(4):83-86. Chen Ming-ming, He Wen-wu, Liu Yan-guang, et al. Research on meta-dynamic recrystallization of 316LN austenitic stainless steel[J]. China Metal Forming Equipment & Manufacturing Technology, 2010(4): 83-86. [3] Ganesan V, Ganesh Kumar J, Laha K, et al. Notch creep rupture strength of 316LN SS and its variation with nitrogen content[J]. Nuclear Engineering and Design, 2013, 254: 179-184. [4] Zhang X Z, Zhang Y S, Li Y J, et al. Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation[J]. Materials Science and Engineering A, 2013, 559: 301-306. [5] Schwartz J, Fandeur O, Rey C. Fatigue crack initiation modeling of 316LN steel based on non local plasticity theory[J]. Procedia Engineering, 2010,2(1):1353-1362. [6] 康欢举,杨爽,孙华. 316LN的应力腐蚀开裂实验研究[J]. 核动力工程,2011, 32(6):101-104,114. Kang Huan-ju, Yang Shuang, Sun Hua. Experimental study on stress corrosion cracking of 316LN[J]. Nuclear Power Engineering, 2011, 32(6):101-104,114. [7] Kim H C, Kim K, Lee Y S, et al. Study on the weld characteristics of 316LN by magnetization measurement[J]. Journal of Nuclear Materials, 2009, 386-388: 650-653. [8] Ozcelik B, Kuram E, Simsek B T. Comparison of dry and wet end milling of AISI 316 stainless steel[J]. Materials and Manufacturing Processes, 2011, 26(8):1041-1049. [9] 张义帅,张秀芝,田香菊,等. 316LN不锈钢锻造开裂锻件组织与断口分析[J]. 锻压技术,2011, 36(6):1-3. Zhang Yi-shuai, Zhang Xiu-zhi, Tian Xiang-ju, et al. Analysis of forging structure and fracture for 316LN stainless steel forging crack[J]. Forging and Stamping Technology, 2011, 36(6):1-3. [10] He W W, Liu J S, Chen H Q, et al. Processing maps and microstructure evolution of 316LN stainless steel[J]. Advanced Science Letters, 2011,4(3): 1235-1239. [11] 黑志刚,段兴旺,刘建生. 温度和应变速率对316LN钢高温性能的影响[J].太原科技大学学报,2012,33(4): 290-293. Hei Zhi-gang, Duan Xing-wang, Liu Jian-sheng. Influence of temperature and strain rate on the high-temperature performances of 316LN steel[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(4): 290-293. [12] 臧金鑫,陶乐晓,冯朝辉,等. 热变形参数对新型Al-Zn-Mg-Cu高强铝合金微观组织的影响[J]. 塑性工程学报,2011,18(5):38-42. Zang Jin-xin, Tao Le-xiao, Feng Zhao-hui, et al. Influence of the deformation parameters on microstructures of a new Al-Zn-Mg-Cu high strength aluminum alloy[J]. Journal of Plasticity Engineering, 2011, 18(5): 38-42. [13] 徐恒钧.材料科学基础[M]. 北京:北京工业大学出版社,2001:409. [14] 张小立,庄传晶,吉玲康,等. 高钢级管线钢的有效晶粒尺寸[J]. 机械工程材料,2007, 31(3): 4-8. Zhang Xiao-li, Zhuang Chuan-jing, Ji Ling-kang, et al. Effective particle size of high grade pipeline steels[J]. Materials for Mechanical Engineering, 2007, 31(3): 4-8. [15] 朱宝辉,胡晓晨,吴孟海,等. TC1钛合金精锻棒材的拉伸性能及断口形貌[J]. 中国有色金属学报,2010,20(专辑1):144-147. Zhu Bao-hui, Hu Xiao-chen, Wu Meng-hai, et al. Tensile properties and fractographs of finish forged bar of TC1 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Special 1): 144-147. [16] 陈朝阳,章金晶,杭先霞,等. 锂离子电池用电解铜箔的断裂研究[J]. 电源技术,2010,34(5):442-445. Chen Zhao-yang, Zhang Jin-jing, Hang Xian-xia, et al. Research of broken copper foil for Li-ion cell[J]. Chinese Journal of Power Sources, 2010, 34(5): 442-445. [17] 李明,宋月清,崔舜,等. V5Cr5Ti合金的高温拉伸性能及其断口特征[J]. 稀有金属,2007,31(4):420-424. Li Ming, Song Yue-qing, Cui Shun, et al. High temperature tensile properties and fracture character of V5Cr5Ti alloy[J]. Chinese Journal of Rare Metals, 2007, 31(4): 420-424. |
[1] | 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805. |
[2] | 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168. |
[3] | 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220. |
[4] | 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547. |
[5] | 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178. |
[6] | 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899. |
[7] | 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973. |
[8] | 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566. |
[9] | 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582. |
[10] | 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521. |
[11] | 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198. |
[12] | 张志强, 贾晓飞, 袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856. |
[13] | 张志强, 贾晓飞, 赵勇, 李湘吉. 高强度硼钢淬火界面热交换系数的实验与模拟[J]. 吉林大学学报(工学版), 2015, 45(4): 1195-1199. |
[14] | 关庆丰, 李艳, 侯秀丽, 杨盛志, 王晓彤. 固溶态Mg-Gd-Y-Nd合金强流脉冲电子束表面改性[J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205. |
[15] | 马云海, 尚文博, 范雪莹, 高知辉, 佟金, 闫志峰, 常志勇. 仿骨β相磷酸三钙多孔生物陶瓷制备及降解[J]. 吉林大学学报(工学版), 2015, 45(4): 1367-1374. |
|