吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 494-500.doi: 10.13229/j.cnki.jdxbgxb201502024

• 论文 • 上一篇    下一篇

316LN钢高温塑性及其断口特征

段兴旺,刘建生   

  1. 太原科技大学 材料科学与工程学院, 太原 030024
  • 收稿日期:2013-06-28 出版日期:2015-04-01 发布日期:2015-04-01
  • 作者简介:段兴旺(1973),男,副教授,博士研究生.研究方向:大型锻造理论与新技术.E-mail:dxwmike1998@sina.com
  • 基金资助:
    国家科技重大专项项目(2009ZX04014-062);山西高校科技研究开发项目(20111015).

Plasticity at elevated temperature and fracture character of 316LN steel

DUAN Xing-wang,LIU Jian-sheng   

  1. College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Received:2013-06-28 Online:2015-04-01 Published:2015-04-01

摘要: 利用Gleeble-1500D热力模拟试验机,对316LN钢进行温度为950~1200 ℃,应变速率分别为0.005、0.05、0.5 和 1 s-1的热力模拟试验。借助扫描电镜(SEM)对断口进行观察,研究316LN钢的高温塑性及高温断裂机制。结果表明:316LN钢高温断裂为韧性断裂,随着温度和应变速率的增加,韧窝尺寸增大,深度增加,塑性增加。同时,采用回归方法构建了断裂应变、塑性指标(延伸率和断面收缩率)分别与变形条件(温度和应变速率)的关系模型,应用这些模型可以计算一定条件下316LN钢的断裂应变、延伸率和断面收缩率,对制定316LN钢的锻造工艺有一定的指导作用。

关键词: 金属材料, 高温塑性, 热力模拟, 316LN钢, 断裂机制

Abstract: Thermal-mechanical simulation tests of 316LN steel were carried out on Gleeble-1500D thermal-mechanical simulator with temperature in the range of 950 ~ 1200 ℃ and strain rates of 0.005, 0.05, 0.5 and 1 s-1. The fractures were observed using a Scanning Electron Microscope (SEM). The plasticity and fracture mechanism of 316LN steel at elevated temperature were studied. The results show that the fracture of 316LN steel at elevated temperature is ductile fracture. The size and depth of dimples increase with the temperature and strain rate. The plasticity also increases with temperature and strain rate. Meanwhile, the relationship models between fracture strain and deformation conditions (temperature and strain rate) and between plastic indexes (elongation and area reduction) and deformation conditions were established using regression method, respectively. Employing these models, the fracture strain, elongation and area reduction of 316LN steel under certain conditions can be calculated. This study provides reference to the design of forging technology of 316LN steel.

Key words: metallic material, plasticity at high temperature, thermal-mechanical simulation, 316LN steel , fracture mechanism

中图分类号: 

  • TG316.2
[1] 潘品李, 钟约先, 马庆贤,等. 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报,2011, 18(5): 13-18.
Pan Pin-li, Zhong Yue-xian, Ma Qing-xian, et al. Research on the dynamic recrystallization behavior of 316LN steel under multi-pass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18.
[2] 陈明明,何文武,刘艳光,等. 316LN奥氏体不锈钢亚动态再结晶行为的研究[J].锻压装备与制造技术,2010(4):83-86.
Chen Ming-ming, He Wen-wu, Liu Yan-guang, et al. Research on meta-dynamic recrystallization of 316LN austenitic stainless steel[J]. China Metal Forming Equipment & Manufacturing Technology, 2010(4): 83-86.
[3] Ganesan V, Ganesh Kumar J, Laha K, et al. Notch creep rupture strength of 316LN SS and its variation with nitrogen content[J]. Nuclear Engineering and Design, 2013, 254: 179-184.
[4] Zhang X Z, Zhang Y S, Li Y J, et al. Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation[J]. Materials Science and Engineering A, 2013, 559: 301-306.
[5] Schwartz J, Fandeur O, Rey C. Fatigue crack initiation modeling of 316LN steel based on non local plasticity theory[J]. Procedia Engineering, 2010,2(1):1353-1362.
[6] 康欢举,杨爽,孙华. 316LN的应力腐蚀开裂实验研究[J]. 核动力工程,2011, 32(6):101-104,114.
Kang Huan-ju, Yang Shuang, Sun Hua. Experimental study on stress corrosion cracking of 316LN[J]. Nuclear Power Engineering, 2011, 32(6):101-104,114.
[7] Kim H C, Kim K, Lee Y S, et al. Study on the weld characteristics of 316LN by magnetization measurement[J]. Journal of Nuclear Materials, 2009, 386-388: 650-653.
[8] Ozcelik B, Kuram E, Simsek B T. Comparison of dry and wet end milling of AISI 316 stainless steel[J]. Materials and Manufacturing Processes, 2011, 26(8):1041-1049.
[9] 张义帅,张秀芝,田香菊,等. 316LN不锈钢锻造开裂锻件组织与断口分析[J]. 锻压技术,2011, 36(6):1-3.
Zhang Yi-shuai, Zhang Xiu-zhi, Tian Xiang-ju, et al. Analysis of forging structure and fracture for 316LN stainless steel forging crack[J]. Forging and Stamping Technology, 2011, 36(6):1-3.
[10] He W W, Liu J S, Chen H Q, et al. Processing maps and microstructure evolution of 316LN stainless steel[J]. Advanced Science Letters, 2011,4(3): 1235-1239.
[11] 黑志刚,段兴旺,刘建生. 温度和应变速率对316LN钢高温性能的影响[J].太原科技大学学报,2012,33(4): 290-293.
Hei Zhi-gang, Duan Xing-wang, Liu Jian-sheng. Influence of temperature and strain rate on the high-temperature performances of 316LN steel[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(4): 290-293.
[12] 臧金鑫,陶乐晓,冯朝辉,等. 热变形参数对新型Al-Zn-Mg-Cu高强铝合金微观组织的影响[J]. 塑性工程学报,2011,18(5):38-42.
Zang Jin-xin, Tao Le-xiao, Feng Zhao-hui, et al. Influence of the deformation parameters on microstructures of a new Al-Zn-Mg-Cu high strength aluminum alloy[J]. Journal of Plasticity Engineering, 2011, 18(5): 38-42.
[13] 徐恒钧.材料科学基础[M]. 北京:北京工业大学出版社,2001:409.
[14] 张小立,庄传晶,吉玲康,等. 高钢级管线钢的有效晶粒尺寸[J]. 机械工程材料,2007, 31(3): 4-8.
Zhang Xiao-li, Zhuang Chuan-jing, Ji Ling-kang, et al. Effective particle size of high grade pipeline steels[J]. Materials for Mechanical Engineering, 2007, 31(3): 4-8.
[15] 朱宝辉,胡晓晨,吴孟海,等. TC1钛合金精锻棒材的拉伸性能及断口形貌[J]. 中国有色金属学报,2010,20(专辑1):144-147.
Zhu Bao-hui, Hu Xiao-chen, Wu Meng-hai, et al. Tensile properties and fractographs of finish forged bar of TC1 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Special 1): 144-147.
[16] 陈朝阳,章金晶,杭先霞,等. 锂离子电池用电解铜箔的断裂研究[J]. 电源技术,2010,34(5):442-445.
Chen Zhao-yang, Zhang Jin-jing, Hang Xian-xia, et al. Research of broken copper foil for Li-ion cell[J]. Chinese Journal of Power Sources, 2010, 34(5): 442-445.
[17] 李明,宋月清,崔舜,等. V5Cr5Ti合金的高温拉伸性能及其断口特征[J]. 稀有金属,2007,31(4):420-424.
Li Ming, Song Yue-qing, Cui Shun, et al. High temperature tensile properties and fracture character of V5Cr5Ti alloy[J]. Chinese Journal of Rare Metals, 2007, 31(4): 420-424.
[1] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[2] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[3] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[4] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[5] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[6] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[7] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[8] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[9] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[10] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[11] 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[12] 张志强, 贾晓飞, 袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
[13] 张志强, 贾晓飞, 赵勇, 李湘吉. 高强度硼钢淬火界面热交换系数的实验与模拟[J]. 吉林大学学报(工学版), 2015, 45(4): 1195-1199.
[14] 关庆丰, 李艳, 侯秀丽, 杨盛志, 王晓彤. 固溶态Mg-Gd-Y-Nd合金强流脉冲电子束表面改性[J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[15] 马云海, 尚文博, 范雪莹, 高知辉, 佟金, 闫志峰, 常志勇. 仿骨β相磷酸三钙多孔生物陶瓷制备及降解[J]. 吉林大学学报(工学版), 2015, 45(4): 1367-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!