吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 769-775.doi: 10.13229/j.cnki.jdxbgxb201503013

• • 上一篇    下一篇

解决交通事故数据分析中零值问题的模型

徐建1, 2, 孙璐1, 3   

  1. 1.东南大学 交通学院,南京 210096;
    2.美国德克萨斯州大学 奥斯汀分校交通研究中心,奥斯汀 78712;
    3.美国华盛顿Catholic大学 土木工程系,华盛顿 20064
  • 收稿日期:2013-08-12 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 孙璐(1972-),男,教授,博士生导师.研究方向:交通工程,道路工程.E-mail:sunl@cua.edu E-mail:xujianseutc@seu.edu.cn
  • 作者简介:徐建(1985-),男,博士研究生.研究方向:交通安全.
  • 基金资助:
    国家自然科学基金项目(51150110478,51250110075); 教育部霍英东基金项目(114024)

Modeling of excess zeros issue in crash count andysis

XU Jian1, 2, SUN Lu1, 3   

  1. 1.School of Transportation, Southeast University, Nanjing, Jiangsu 210096, China;
    2.Center for Transportation Research, University of Texas at Austin, Austin 78712, USA;
    3. Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA
  • Received:2013-08-12 Online:2015-05-01 Published:2015-05-01

摘要: 运用多种拟合优度措施,包括离差信息准则(DIC)、平均绝对偏差(MAD)、预测均方误差(MSPE)和最大累计残差(MCPD)以及交叉验证评价法(CV),以美国某州2010年交通事故为实例,运用马尔可夫链蒙特卡洛算法,综合比较和分析了零膨胀泊松模型和负二项模型、多层零膨胀泊松模型和负二项模型以及泊松Lindley和负二项Lindley模型等。研究结果表明:3类模型中Lindley模型拟合效果最好,多层零膨胀模型其次;而6种模型中负二项Lindley模型拟合效果最好。

关键词: 交通运输安全工程, 交通事故, 零膨胀模型, 多层零膨胀模型, Lindley模型, 拟合优度

Abstract: The performances of several mathematical models are evaluated for the investigation of the excess zeros issue in crash data analysis. These models include: zero-inflated Poisson and negative binomial models, multiple zero-inflated Poisson and negative binomial models, Poisson- and binomial-Lindley models. In the evaluation several goodness-of-fit measures are employed, including Deviance Information Criterion (DIC), Mean Absolute Deviance (MAD), Mean Square Predictive Error (MSPE), Maximum Cumulative Residual Plot Deviance (MCPD) and Cross-Validation assessment (CV). The evaluation is conducted based on the crash data sets of a state of USA in year 2010, and Markov chain and Monte Carlo methods are used. Statistic results show that Lindley models are preferred to multilevel zero-inflated models; among all the six models, the negative binomial-Lindley performs the best.

Key words: traffic and transportation safety engineering, crash count, zero-inflated models, multilevel zero-inflated models, Lindley models, goodness-of-fit

中图分类号: 

  • U491.31
[1] Lambert D. Zero-inflated poisson regression, with an application to defects in manufacturing[J]. Technometrics, 1992,34(1):1-14.
[2] Miaou, S. The relationship between truck accidents and geometric design of road sections: poisson versus negative binomial regressions[J]. Accident Analysis & Prevention,1994,26(4):471-482.
[3] Lee J, Mannering F L. Impact of roadside features on the frequency and severity of run-off-road accidents:an empirical analysis[J]. Accident Analysis & Prevention, 2002,34(2):349-361.
[4] Shankar V N, Ulfarsson G F, Pendyala R M, et al. Modeling crashes involving pedestrians and motorized traffic[J]. Safety Science,2003,41(7):627-640.
[5] Qin X, Ivan J N, Ravishankar N. Selecting exposure measures in crash rate prediction for two-lane highway segments[J]. Accident Analysis & Prevention,2004,36(2):183-191.
[6] Yan Xue-dong,Wang Bin,An Mei-wu, et al. Distinguishing between rural and urban road segment traffic safety based on zero-inflated negative binomial regression models[DB/OL]. [2013-01-18].http://www.hindawi.com/journals/ddns/2012/789140/.
[7] 马壮林,邵春福,胡大伟,等.高速公路交通事故起数时空分析模型[J]. 交通运输工程学报,2012,12(2):93-99.
Ma Zhuang-lin, Shao Chun-fu, Hu Da-wei, et al. Temporal-spatial analysis model of traffic accident frequency on expressway[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (2): 93-99.
[8] Lee A H, Wang Kui, Scott J A, et al. Multi-level zero-inflated Poisson regression modeling of correlated count data with excess zeros[J]. Statistical Methods in Medical Research,2006,15(1):47-61.
[9] Moghimbeigi A,Eshraghian M R,Mohammad K,et al.Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros[J].Journal of Applied Statistics,2008,35(10):1193-1202.
[10] Lindley D V. Fiducial distributions and Bayes' theorem[J]. Journal of the Royal Statistical Society,1958,20(1):102-107.
[11] Zamani H, Ismail N. Negative binomial-Lindley distribution and its application[J]. Journal of Mathematics and Statistics,2010,6(1):4-9.
[12] Lord D, Geedipally S R. The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros[J]. Accident Analysis and Prevention,2011,43(5):1738-1742.
[13] Reddy G S, Lord D, Dhavala S S. The negative binomial-Lindley generalized linear model: Characteristics and application using crash data[J]. Accident Analysis & Prevention,2012,45(3):258-265.
[14] Miaou S.The relationship between truck accidents and geometric design of road sections:Poisson versus negative binomial regressions[J].Accident Analysis & Prevention,1994,26(4):471-482.
[15] Vuong Q H. Likelihood ratio tests for model selection and non-nested hypothesis[J]. Econometrica,1989,57(2),307-333.
[16] Oh J, Lyon C, Washington S P, et al. Validation of the FHWA crash models for rural intersections: lessons learned[C]∥Transportation Research Record, Transportation Research Board, National Research Council,Washington DC, 2003:41-49.
[17] Geedipally S R, Patil S, Lord D. Examination of methods for estimating crash counts according to their collision type[J]. Transportation Research Record, Transportation Research Board, National Research Council, Washington DC,2010:12-20.
[18] Huang H L,Chin H C.Modeling road traffic crashes with zero-inflation and site-specific random effects[J].Statistical Methods & Applications,2010,19(3):445-462.
[19] Thomas A, O'Hara B, Ligges U, et al. Making BUGS open[J]. R News,2006,6(1):12-17.
[1] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[2] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[3] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[4] 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[5] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[6] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[7] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[8] 陈强, 许洪国, 谭立东. 基于小型无人机摄影测量的交通事故现场勘查[J]. 吉林大学学报(工学版), 2016, 46(5): 1439-1446.
[9] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[10] 王喆, 杨柏婷, 刘昕, 刘群, 宋现敏. 基于模糊聚类的驾驶决策判别[J]. 吉林大学学报(工学版), 2015, 45(5): 1414-1419.
[11] 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101.
[12] 金立生, 王岩, 刘景华, 王亚丽, 郑义. 基于Adaboost算法的日间前方车辆检测[J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608.
[13] 金立生,牛清宁,刘景华,秦彦光,吕欢欢. 不同道路线形下驾驶人认知分散状态监测[J]. 吉林大学学报(工学版), 2014, 44(3): 642-647.
[14] 詹伟, 吕庆, 尚岳全. 高速公路隧道群交通事故灰色马尔可夫预测[J]. 吉林大学学报(工学版), 2014, 44(01): 62-67.
[15] 李志斌, 刘攀, 金茂菁, 徐铖铖. 高速公路常发拥堵路段追尾事故风险实时预测[J]. 吉林大学学报(工学版), 2013, 43(06): 1482-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!