吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1981-1986.doi: 10.13229/j.cnki.jdxbgxb201606030

• • 上一篇    下一篇

鸮翼后缘噪声的预测及控制

葛长江1, 叶辉1, 胡兴军1, 于征磊2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2015-11-12 出版日期:2016-11-20 发布日期:2016-11-20
  • 作者简介:葛长江(1981-),男,工程师,博士.研究方向:工程仿生学.E-mail:163_gongbo@163.com
  • 基金资助:
    国家自然科学青年基金项目(51505182); 吉林省科技发展计划项目(20160520065JH)

Prediction and control of trailing edge noise on owl wings

GE Chang-jiang1, YE Hui1, HU Xing-jun1, YU Zheng-lei2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2015-11-12 Online:2016-11-20 Published:2016-11-20

摘要: 基于鸮翼的仿生翼型可用于揭示鸮翼的噪声产生机理。通过大涡模拟给出仿生翼型的流场,从中发现由前缘分离引起的两个声源分别为再附着的湍流边界层和从气泡中分离出来的涡脱落。由此可知,低雷诺数下的鸮翼宽频噪声是由湍流边界层散射导致的。之后,将被动多孔技术用于仿生翼型的后缘,在静压场中证实了多孔后缘缓解瞬态压力变化的作用。相关的噪声频谱也表明,多孔后缘具有高达10 dB以上的降噪潜力,但是降噪的幅度依赖于流阻率。

关键词: 工程仿生学, 仿生翼型, 涡脱落, 湍流边界层, 多孔处理, 后缘降噪

Abstract: An airfoil mimicking owl wings is used to determine the noise generation mechanism of silent owl. The flow field around the bionic airfoil suggests two noise sources caused by the leading-edge separation, one is the reattached turbulent boundary and the other one is the vortex shedding detached from leading-edge bubble. The reason for owl wing noise in low Reynolds number is the interaction between the turbulent boundary layer and the sharp trailing-edge of the bionic airfoil. Furthermore, as a promising means, the passive porosity technology is applied for the trailing-edge noise reduction of the airfoil. The static pressure fields around the airfoil verify that the porous trailing-edge can alleviate pressure change by the suppression of the vortex shedding and the damping of broadband turbulent boundary layer fluctuation. The relevant noise spectrum also indicates a pronounced noise reduction potential in excess of 10 dB, but in dependence on the flow resistivity. The findings of this study may be used as reference in the design of silent aircraft.

Key words: engineering bionics, bionic airfoil, vortex shedding, turbulent boundary layer, porous treatment, trailing edge noise reduction

中图分类号: 

  • TB17
[1] Takeda K, Ashcroft G B, Zhang X. Unsteady aerodynamics of slat cove flow in a high-lift device configuration[C]∥AIAA Paper, 2001-0706.
[2] Graham R R. The silent flight of owls[J]. J R Aeronaut,1934,38:837-843.
[3] Lilley G M. A study of the silent flight of the owl[J]. AIAA Paper, 1998-2340.
[4] Chen K,Liu Q P,Liao G H,et al. The sound suppression characteristics of wing feather of owl (Bubo bubo)[J]. Journal of Bionic Engineering, 2012,9(2):192-199.
[5] Herr M. New Results in Numerical and Experimental Fluid Mechanics V: Experimental Study on Noise Reduction through Trailing Edge Brushes[M]. Berlin Heidelberg:Springer, 2006:365-372.
[6] Tinetti A F, Kelly J F, Bauer S X S, et al. On the use of surface porosity to reduce unsteady lift[C]∥AIAA Paper, 2001-2921.
[7] Tinetti A F,Kelly J F,Thomas R H,et al. Reduction of wake-stator interaction noise using passive porosity[C]∥AIAA Paper,2002-1036.
[8] Sarradj E, Geyer T. Noise generation by porous airfoils[J]. AIAA Paper, 2007-3719.
[9] Geyer T, Sarradj E, Fritzsche C. Porous airfoils: noise reduction and boundary layer effects[C]∥AIAA Paper,2009-3392.
[10] Sueki T, Ikeda M, Takaishi T. Aerodynamic noise reduction using porous materials and their application to high-speed pantographs[R]. Quarterly Report of RTRI,2009,50(1):26-31.
[11] Marsden A L, Wang M, Dennis J E, et al. Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation[J]. Journal of Fluid Mechanics,2007,572:13-36.
[12] Lai H X, Luo K H. A conceptual study of cavity aeroacoustics control using porous media inserts[J]. Flow Turbul Combust,2008,80(3):375-391.
[13] Bruneau C H, Mortazavi I. Numerical modelling and passive flow control using porous media[J]. Comput Fluids,2008,37(5):488-498.
[14] Frink N, Bonhaus D, Vatsa V, et al. A boundary condition for simulation of flow over porous surfaces[J]. AIAA Paper,2001-2412.
[15] Khorrami M R, Li F, Choudhari M. Novel approach for reducing rotor tip clearance-induced noise in turbofan engines[J]. AIAA Journal,2002,40(8):1518-1528.
[16] 任露泉,孙少明,徐成宇. 鸮翼前缘非光滑形态消声降噪机理[J]. 吉林大学学报:工学版,2008,38(增刊1):126-131.
Ren Lu-quan,Sun Shao-ming,Xu Cheng-yu. Noise reduction mechanism of non-smooth leading edge of owl wing[J]. Journal of Jilin University(Engineering and Technology Edition), 2008,38(Sup.1):126-131.
[17] Klan S, Bachmann T, Klaas M, et al. Experimental analysis of the flow field over a novel owl based airfoil[J]. Experiments in Fluids,2009,46(5):975-989.
[18] Ge C J, Ren L Q, Liang P, et al. High-lift effect of bionic slat based on owl wing[J]. Journal of Bionic Engineering,2013,10(4):456-463.
[19] Geyer T, Sarradj E, Fritzsche C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids,2010,48(2):291-308.
[20] Arcondoulis E J G, Doolan C J, Zander A C, et al. On the generation of airfoil tonal noise at zero angle of attack and low to moderate Reynolds number[J]. AIAA Paper,2012-2060.
[21] Herr M, Dobrzynski W. Experimental investigation in low-noise trailing edge design[C]∥AIAA Paper, 2004-2804.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[4] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[5] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[6] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[7] 崔文诗, 杨志刚, 王国俊, 周华. 不同后倾角三维车辆的尾迹非定常流动分析[J]. 吉林大学学报(工学版), 2017, 47(3): 717-724.
[8] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[9] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[10] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[11] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[12] 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[13] 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
[14] 杨卓娟, 王庆成, 高英, 门玉琢, 杨晓东. 不同溶液对荷叶润湿性能的影响[J]. 吉林大学学报(工学版), 2015, 45(6): 1869-1873.
[15] 田为军, 王骥月, 李明, 陈思远, 刘方圆, 丛茜. 小型水平轴风力机叶片仿生设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1495-1501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .