吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1987-1994.doi: 10.13229/j.cnki.jdxbgxb201606031
周于1, 2, 3, 付成龙1, 2, 3, 陈恳1, 2, 3
ZHOU Yu1, 2, 3, FU Cheng-long1, 2, 3, CHEN Ken1, 2, 3
摘要: 为了研究弹性减少跳跃机器人能耗、提高能量效率的机理,本文在被动跳跃状态下,对比了负载刚性连接及负载弹性悬挂两种单足跳跃机器人一维跳跃过程的能耗特性,并探讨了悬挂参数对能耗特性的影响。理论分析和仿真结果表明:跳跃支撑相期间,负载弹性悬挂单足跳跃机器人部分能量储存在悬挂弹簧中,有助于减小跳跃能耗;随着悬挂阻尼增大,悬挂弹簧刚度需要相应增大以减小能耗;飞行相中,虽然悬挂阻尼会导致跳跃机器人负载和躯干由于相对运动产生阻尼能耗,但是飞行相阻尼能耗显著小于支撑相,不影响总体节能效果。
中图分类号:
[1] Raibert M. Legged Robots That Balance[M]. Cambridge, USA: MIT Press, 1986:92-95. [2] Blickhan R. The spring-mass model for running and hopping[J]. Journal of Biomechanics,1989,22(11-12):1217-1227. [3] Full R, Koditschek D. Templates and anchors: neuromechanical hypotheses of legged locomotion on land[J]. Journal of Experimental Biology,1999,202(23):3325-3332. [4] Ghigliazza R, Altendorfer R, Holmes P, et al. A simply stabilized running model[J]. SIAM Review,2005,47(3):519-549. [5] 帅梅,付成龙,杨向东,等. 不平整地面仿人机器人行走控制策略[J]. 机械工程学报,2006,42(8):1-6. Shuai Mei, Fu Cheng-long, Yang Xiang-dong,et al. Control strategy about humanoid robot stable locomotion on uneven ground[J]. Chinese Journal of Mechanical Engineering,2006,42(8):1-6. [6] 鄂明成,刘虎,张秀丽,等. 一种粗糙地形下四足仿生机器人的柔顺步态生成方法[J]. 机器人,2014,36(5):584-591. E Ming-cheng, Liu Hu, Zhang Xiu-li, et al. Compliant gait generation for a quadruped bionic robot walking on rough terrains[J]. Robot,2014,36(5):584-591. [7] Raibert M, Brown H, Chepponis M. Experiments in balance with a 3D one-legged hopping machine[J]. The International Journal of Robotics Research,1984,3(2):75-92. [8] 赵明国,裘有斌,陈向,等. 单足气动跳跃机器人的基于时间事件控制方法[J]. 机器人,2012,34(5):525-530. Zhao Ming-guo, Qiu You-bin, Chen Xiang,et al. Control algorithm based on time event for a pneumatic single-legged hopping robot[J]. Robot,2012,34(5):525-530. [9] Boggs D.Interactions between locomotion and ventilation in tetrapods[C]∥Annual Meeting of the Society-for-Experimental-Biology,Canterbury,UK,2001:269-288. [10] Alexander R. Breathing while trotting[J]. Science,1993, 262(5131):196-197. [11] Kram R. Carrying loads with springy poles[J]. Journal of Applied Physiology,1991,71(3): 1119-1122. [12] Rome L, Flynn L, Goldman E, et al. Generating electricity while walking with loads[J]. Science, 2005,309(5741):1725-1728. [13] Kuo A. Harvesting energy by improving the economy of human walking[J]. Science,2005,309(5741):1686-1687. [14] Foissac M, Millet G, Geyssant A, et al. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking[J]. Journal of Biomechanics,2009,42(2):125-130. [15] Ackerman J,Seipel J. A model of human walking energetics with an elastically-suspended load[J]. Journal of Biomechanics,2014,47(8):1922-1927. [16] Ackerman J,Seipel J. Energy efficiency and stability of a nonlinear coupled-oscillator model of hopping with elastically-suspended loads[C]∥Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, USA,2012:271-280. [17] Ackerman J,Seipel J. Coupled-oscillator model of locomotion stability with elastically-suspended loads[C]∥Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington DC, USA, 2011:199-205. [18] Da X, Ackerman J, Seipel J. Energetic and dynamic analysis of multifrequency legged robot locomotion with an elastically suspended load[J]. Journal of Computational and Nonlinear Dynamics,2013,9(2):021006. [19] Ackerman J,Seipel J. Energy efficiency of legged robot locomotion with elastically suspended loads[J]. IEEE Transactions on Robotics,2013,29(2):321-330. [20] 翟红生,王佳欣.基于人工势场的机器人动态路径规划新方法[J].重庆邮电大学学报:自然科学版,2015,27(6):814-818. Zhai Hong-sheng,Wang Jia-xin.Dynamic path planning research for mobile robot based on artificial potential field[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2015,27(6):814-818 [21] 王海燕,李贻斌,宁龙霄. 液压驱动双足机器人运动系统的设计及实现[J]. 吉林大学学报:工学版,2014,44(3):750-756. Wang Hai-yan, Li Yi-bin, Ning Long-xiao. Design and implementation of a hydraulic actuated biped robot motion system[J]. Journal of Jilin University (Engineering and Technology Edition),2014,44(3):750-756. [22] Wu A, Geyer H. The 3-D spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments[J]. IEEE Transactions on Robotics,2013,29(5):1114-1124. |
[1] | 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H∞性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819. |
[2] | 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826. |
[3] | 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843. |
[4] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[5] | 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562. |
[6] | 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190. |
[7] | 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198. |
[8] | 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852. |
[9] | 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858. |
[10] | 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525. |
[11] | 毛钰, 左曙光, 林福, 曹佳楠, 郑玉平. 基于弹性连接结构的电动轮纵向振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 74-82. |
[12] | 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244. |
[13] | 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875. |
[14] | 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885. |
[15] | 金敬福, 李杨, 陈廷坤, 丛茜, 齐迎春. 涂层弹性模量对结冰附着强度的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1548-1553. |
|