吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 2052-2058.doi: 10.13229/j.cnki.jdxbgxb201606039
尹明1, 2, 战荫伟3, 裴海龙2
YIN Ming1, 2, ZHAN Yin-wei3, PEI Hai-long2
摘要: 为获得高质量融合图像,本文运用稀疏补分解理论,提出了一种新的多聚焦图像融合方法。首先给出了正则化约束下的稀疏补分解算子学习模型,并从相似样本数据训练出分解算子;再利用分解算子从待融合图像中提取稀疏特征,经取大融合规则获得融合系数;最后通过极小化全变差问题重建融合图像。实验结果表明,本文方法优于稀疏综合表示的图像融合算法:在互信息指标上,最大增益为0.65;在QABF指标上,最大增益为0.1。
中图分类号:
[1] 牛轶峰, 沈林成. 基于IMOPSO算法的多目标多聚焦图像融合[J].电子学报, 2006, 34(9):1578-1583. Niu Yi-feng, Shen Lin-cheng. Multiobjective optimization for multifocus image fusion using IMOPSO[J]. Chinese Journal of Electronics, 2006, 34(9): 1578-1583. [2] Petrovic V S, Xydeas C S. Gradient-based multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228-237. [3] Mohammad Bagher Akbari Haghighat, Ali Aghagolzadeh, Hadi Seyedarabi. Multi-focus image fusion for visual sensor networks in DCT domain[J]. Computers & Electrical Engineering, 2011,37(5):789-797. [4] Tang Lei, Zhao Feng, Zhao Zong-gui. The nonsubsampled contourlet transform for image fusion[C]∥In Proceedings of ICWAPR '07, Beijing,China,2007:305-310. [5] Tessens L, Ledda A, Pizurica A, et al. Extending the depth of field in microscopy through curvelet-based frequency-adaptive image fusion[C]∥In Proceedings of ICASSP,Honolulu,USA,2007:I-861-864. [6] Yang Bin,Li Shu-tao. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010,59(4):884-892. [7] 陈浩, 王延杰. 基于拉普拉斯金字塔变换的图像融合算法研究[J].激光与红外, 2009,39(4):439-442. Chen Hao, Wang Yan-jie. Research on image fusion algorithm based on Laplacian pyramid transform[J]. Laser & Infrared,2009,39(4):439-442. [8] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862. [9] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Transactions on Information Theory, 2002, 48(9):2558-2567. [10] Yu Nan-nan, Qiu Tian-shuang, Bi Feng, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1074-1082. [11] 余南南,邱天爽,毕峰,等.基于K-SVD的医学图像特征提取和融合[J]. 大连理工大学学报, 2012(4):605-609. Yu Nan-nan, Qiu Tian-shuan, Bi Feng, et al. Medical image features extraction and fusion based on K-SVD[J]. Journal of Dalian University of Technology, 2012(4):605-609. [12] Yu Xian-chuan, Gao Guan-yin, Xu Jin-dong, et al. Remote sensing image fusion based on sparse representation[C]∥2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2014:2858-2861. [13] Elad M, Milandfar P, Rubinstein R. Analysis versus synthesis in signal priors[J]. Inverse Problems, 2007, 23(3): 947-968. [14] 张宗念,李金徽,黄仁泰,等. 稀疏补分析模型下迭代硬阈值正交投影[J]. 计算机应用,2013,33(8): 2387-2389,2393. Zhang Zong-nian, Li Jin-hui, Huang Ren-tai, et al. Iterative hard thresholding orthogonal projection under cosparsity analysis model[J]. Journal of Computer Applications, 2013, 33(8): 2387-2389,2393. [15] Nam S, Davies M E, Elad M, et al. The cosparse analysis model and algorithms[J].Applied and Computational Harmonic Analysis, 2013,34(1):30-56. [16] Mehrdad Yaghoobi, Sangnam Nam, Remi Gribonval, et al. Constrained overcomplete analysis operator learning for cosparse signal modelling[J]. IEEE Transaction on Signal Processing, 2013,61(9):2341-2355. [17] Ning Qiang, Chen Kan, Li Yi, et al. Image super-resolution via analysis sparse prior[J]. IEEE Signal Processing Letters, 2013, 20(4):399-402. [18] 严洁, 阮友田, 薛珮瑶. 主被动光学图像融合技术研究[J]. 中国光学, 2015,8(3): 378-385. Yan Jie, Ruan You-tian, Xue Pei-yao. Active and passive optical image fusion technology[J]. Chinese Optics, 2015,8(3): 378-385. [19] 孙寿健, 魏立线, 刘佳, 等. 一种基于权重融合的JPEG隐写分析方法[J]. 液晶与显示, 2015, 30(2): 326-332. Sun Shou-jian, Wei Li-xian, Liu Jia, et al. A rights-based re-integration method for JPEG steganalysis[J]. Chinese Journal of Liquid Crystal and Displays, 2015, 30(2): 326-332. [20] 王嘉成, 孙海江, 刘培勋, 等. 高分辨率多传感器融合图像跟踪系统的设计与实现[J]. 液晶与显示, 2016, 31(8): 825-830. Wang Jia-cheng, Sun Hai-jiang, Liu Pei-xun, et al. Design and implementation of high resolution multi-sensors fusion tracking system[J]. Chinese Journal of Liquid Crystal and Displays, 2016, 31(8): 825-830. [21] 许廷发, 李俊涛, 张一舟, 等. 真彩色传递双波段图像融合[J]. 中国光学, 2014,7(3): 402-410. Xu Ting-fa, Li Jun-tao, Zhang Yi-zhou, et al. True color transfer for dual band image fusion[J]. Chinese Optics, 2014,7(3): 402-410. [22] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18, 2419-2434. [23] Liu Yu, Wang Zeng-fu. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015,9(5):347-357. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[7] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[8] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[9] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[10] | 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620. |
[11] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[12] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[13] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[14] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[15] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
|