吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 492-499.doi: 10.13229/j.cnki.jdxbgxb20170083

• • 上一篇    下一篇

离散相磨粒粒径对磨粒流研抛共轨管质量的影响

李俊烨1, 2, 胡敬磊1, 杨兆军2, 张心明1, 周曾炜1   

  1. 1.长春理工大学 机电工程学院,长春 130022;
    2.吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2017-01-31 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 张心明(1967-),男,研究员,博士生导师. 研究方向:精密超精密加工、检测及装备.E-mail:zxm@cust.edu.cn
  • 作者简介:李俊烨(1981-),男,副教授,博士. 研究方向:精密与超精密加工,摩擦与多相流技术. E-mail:ljy@cust.edu.cn
  • 基金资助:
    国家自然科学基金项目(51206011); 吉林省科技发展计划项目(20160101270JC, 20170204064GX); 吉林省教育厅项目(吉教科合字[2016]第386号)

Effect of the size of discrete phase abrasive particles on the abrasive flow polishing quality of common rail pipe

LI Jun-ye1, 2, HU Jing-lei1, YANG Zhao-jun2, ZHANG Xin-ming1, ZHOU Zeng-wei1   

  1. 1. College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun 130022,China;
    2. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2017-01-31 Online:2018-03-01 Published:2018-03-01

摘要: 为研究磨粒粒径对磨粒流研抛质量的影响,以共轨管为研究对象,通过计算模拟不同磨粒粒径下磨粒流的状态,分别从流场动压力、速度场、磨粒的运动轨迹、湍流动能进行不同场的离散相分析。从数值分析可知,随着磨粒粒径增大,动压力、速度和湍流动能降低,磨削效果减弱。对经磨粒流研抛前后的共轨管工件进行了表面粗糙度和表面形貌的检测,测得磨粒流研抛前的表面粗糙度为3.401 μm,研抛后的表面粗糙度为1.138 μm,从而确认了磨粒流研抛具有内通道结构的工件的有效性,也证实了数值模拟的正确性,为磨粒流研抛技术的发展提供了理论支持。

关键词: 机械制造工艺与设备, 共轨管, 离散相, 磨粒粒径, 研抛质量

Abstract: In order to study the effect of abrasive grain size on abrasive flow polishing, common rail pipe was selected as the research object. By calculation the state of abrasive grain flow under different grain sizes, the discrete phase analysis of the flow field was carried out from the dynamic pressure, the velocity field, the abrasive grain trajectory and the turbulent kinetic energy. From the numerical analysis shows that, with the increase in the grain size, the dynamic pressure, the velocity and the turbulent kinetic energy are reduced and the grinding effect is weakened. The trajectory of the abrasive grain can be used to predict and theoretically guide the optimal control of the abrasive grinding path and the production process, thus achieving effective and accurate polishing. The surface roughness and the surface topography of the common rail pipe were measured before and after abrasive flow grinding. The surface roughness was 3.401 μm before the grinding and was 1.138 μm after the grinding. This verifies the effectiveness of abrasive flow polishing workpiece with inner channel structure, and confirms the correctness of the numerical analysis. This work may provide theoretical support for the development of abrasive grinding technology.

Key words: machinery manufacturing technology and equipment, common rail pipe, discrete phase, abrasive particle size, polishing quality

中图分类号: 

  • TH161.1
[1] 段炼,袁寿其,胡林峰,等. 高压共轨喷油器控制阀空化研究[J].农业机械学报,2015,46(5):321-327.
Duan Lian, Yuan Shou-qi, Hu Lin-feng, et al. Cavitation analysis of control-valve in high-pressure common rail injector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 321-327.
[2] 李俊烨,许颖,杨立峰,等. 非直线管零件的磨粒流加工实验研究[J].中国机械工程,2014,25(13):1729-1734.
Li Jun-ye, Xu Ying, Yang Li-feng, et al. Research on abrasive flow machining experments of non-linear tubes[J]. China Mechanical Engineering, 2014, 25(13): 1729-1734.
[3] Li Jun-ye, Yang Li-feng, Liu Wei-na, et al. Experimental research into technology of abrasive flow machining non-linear tube runner[J]. Advances in Mechanical Engineering, 2014, 752353:1-9.
[4] 尹延路,滕 琦,李俊烨,等. 基于大涡数值模拟的磨粒流流场仿真分析[J].机电工程,2016,33(5):537-541.
Yin Yan-lu, Teng Qi, Li Jun-ye, et al.Simulated a nalysis based on large eddy numerical simulation for abrasive flow field[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(5): 537-541.
[5] 计时鸣,黄希欢,谭大鹏,等. 气-液-固三相磨粒流光整加工及其工艺参数优化[J].光学精密工程,2016,24(4):855-864.
Ji Shi-ming, Huang Xi-huan, Tan Da-peng, et al.Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Optics and Precision Engineering, 2016, 24(4): 855-864.
[6] Uhlmann E, Schmiedel C, Wendler J. CFD simulation of the abrasive flow machining process[J]. 15th CIRP Conference on Modeling of Machining Operations, 2015, 31: 209-214.
[7] 吴桂玲,侯吉坤. 共轨管小孔磨粒流加工特性三维数值分析[J].航空制造技术,2014,466(22):158-160.
Wu Gui-ling, Hou Ji-kun. Three-dimensional numerical analysis for micro-hole abrasive flow machining feature of the common-rail tube[J]. Aviation Manufacturing Technology, 2014,466(22): 158-160.
[8] Kartal F, Gokkaya H. Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel [J]. Materials Science, 2015, 57(9): 773-782.
[9] 谢阳,罗麒元,麻剑,等. 喷油嘴喷孔内流动特性数值仿真与试验分析[J].浙江大学学报:工学版,2016,50(1):111-115.
Xie Yang, Luo Qi-yuan, Ma Jian, et al. Numerical simulation and experimental validation of internal nozzle flow characteristic of injector[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(1): 111-115.
[10] 高航,吴鸣宇,付有志,等. 流体磨料光整加工理论与技术的发展[J].机械工程学报,2015,51(7):174-187.
Gao Hang, Wu Ming-yu, Fu You-zhi, et al. Development of theory and technology in fluid abrasive finishing technology[J]. Journal of Mechanical Engineering, 2015, 51(7): 174-187.
[11] 丁金福,刘润之,张克华,等. 磨粒流精密光整加工的微切削机理[J].光学精密工程,2014,22(12):3324-3331.
Ding Jin-fu, Liu Run-zhi, Zhang Ke-hua, et al. Micro cutting mechanism of abrasive flow precision machining[J]. Optics and Precision Engineering, 2014, 22(12): 3324-3331.
[12] Li Jun-ye, Liu Wei-na, Yang Li-feng, et al. Study of abrasive flow machining parameter optimization based on taguchi method[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2949-2954.
[13] 高春甫,刘向阳,王立江,等. 无磨料低温抛光的均匀性仿真[J].吉林大学学报:工学版,2004,34(3):388-391.
Gao Chun-fu, Liu Xiang-yang, Wang Li-jiang, et al. Uniformity simulation of abrasiveless cryogenic pol ishing[J]. Journal of Jilin University (Engineering and Technology Edition), 2004, 34(3): 388-391.
[14] 沈志煌,姚斌,陆如升,等. 精密螺杆转子齿廓成形磨削的误差分析[J].吉林大学学报:工学版,2014,44(6):1591-1595.
Shen Zhi-huang, Yao Bin, Lu Ru-sheng, et al. From grinding error analysis of precision screw rotor profile[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1591-1595.
[15] 李亚林,袁寿其,汤跃,等. 离心泵内示踪粒子运动的离散相模型模拟[J].农业机械学报,2012,43(11):113-118,64.
Li Ya-lin, Yuan Shou-qi,Tang Yue, et al. Simulation of tracer particles movement by discrete phase model in the centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 113-118,64.
[16] 计时鸣,马宝丽,谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J].光学精密工程,2011,19(9):2092-2099.
Ji Shi-ming, Ma Bao-li, Tan Da-peng. Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Optics and Precision Engineering, 2016, 24(4): 855-864.
[17] 李俊烨,乔泽民,杨兆军,等. 介观尺度下磨料浓度对磨粒流加工质量影响研究[J]. 吉林大学学报:工学版,2017,47(3): 837-843.
Li Jun-ye, Qiao Ze-min, Yang Zhao-jun, et al. Influence of abrasive concentration on the processing quality of abrasive flow in mesoscopic scale[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 837-843.
[1] 寇淑清, 石舟. 裂解连杆接合面三维重构及其强度与刚度[J]. 吉林大学学报(工学版), 2018, 48(5): 1515-1523.
[2] 陈超, 赵升吨, 崔敏超, 韩晓兰, 范淑琴, 石田徹. AL5052铝合金板平压重塑形连接试验[J]. 吉林大学学报(工学版), 2017, 47(5): 1512-1518.
[3] 郎利辉, 阚鹏, 王耀, 孙志莹, 张泉达. 铝合金板材三向应力状态下的成形性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1527-1533.
[4] 张鹏, 寇淑清, 赵勇, 林宝君. 装配式凸轮轴三点式轴向滚花过程[J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
[5] 王犇, 王晓力. 硅微球轴承关键工艺[J]. 吉林大学学报(工学版), 2016, 46(3): 824-830.
[6] 郭哲锋, 汤文成. 杯形件二次拉深的应力分析[J]. 吉林大学学报(工学版), 2016, 46(2): 494-499.
[7] 滕菲, 刘博, 张万喜, 高嵩. 柔性三维拉弯成形工艺稳健设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1481-1487.
[8] 寇淑清, 张鹏, 韩广秘, 杨慎华. 装配式凸轮轴多道次扩径联接工艺[J]. 吉林大学学报(工学版), 2014, 44(2): 398-403.
[9] 寇淑清, 杨宏宇, 高岩, 杨慎华. 裂解连杆断裂结合面缺损面积定量描述与分析[J]. 吉林大学学报(工学版), 2013, 43(06): 1541-1545.
[10] 洪肇斌, 杨兆军, 张学成, 王佰超. 基于齿面发生线的弧齿锥齿轮铣削加工仿真分析[J]. 吉林大学学报(工学版), 2013, 43(02): 334-339.
[11] 宋占杰, 张美, 何改云, 刘佩佩. 基于质心Voronoi结构的自由曲面布点策略[J]. 吉林大学学报(工学版), 2013, 43(01): 34-38.
[12] 曲兴田, 王滨, 张雷, 邵奎伟, 张亮. 焊缝磨抛图像预处理技术[J]. , 2012, (06): 1421-1425.
[13] 李国发, 张栋林, 龚金龙, 王利斌. ZrO2陶瓷激光加热辅助切削加工技术[J]. , 2012, (06): 1409-1414.
[14] 张雷, 耿伟强, 鲍勇吉, 赵继. 用于羟基磷灰石冷喷涂的超声波送粉系统[J]. , 2012, (06): 1402-1408.
[15] 李栎楠, 杨兆军, 王彦鹍, 张学成. 产形线切齿法加工准双曲面齿轮的产形线建模及代用方法[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文权, 商延赓, 李秀娟, 王春生, 张桂兰. 激光焊接650 MPa相变诱发塑性钢的组织与性能[J]. , 2012, 42(05): 1203 -1207 .
[2] 黄健康1, 何翠翠1, 2, 石玗1, 樊丁1. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] 徐涛, 刘光洁, 葛海潮, 张炜, 于征磊. 焊接热源局部坐标移动曲线路径建模方法[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] 骆海涛, 周维佳, 王洪光, 武加锋. 搅拌摩擦焊机器人典型工况下的受载分析[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] 初亮, 孙成伟, 郭建华, 赵迪, 李文惠. 基于轮缸压力的制动能量回收评价方法[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] 何祥坤, 季学武, 杨恺明, 武健, 刘亚辉. 基于集成式线控液压制动系统的轮胎滑移率控制[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] 袁朝春, 张龙飞, 陈龙, 何友国, 范兴根. 基于路面辨识的主动避撞系统制动性能[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .