吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 29-35.doi: 10.13229/j.cnki.jdxbgxb20181027

• 车辆工程·机械工程 • 上一篇    下一篇

内凹三角形负泊松比结构耐撞性多目标优化设计

马芳武1,2(),梁鸿宇1,2,赵颖1,杨猛1,蒲永锋1   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
    2. 吉林大学 青岛汽车研究院, 山东 青岛 266000
  • 收稿日期:2018-09-06 出版日期:2020-01-01 发布日期:2020-02-06
  • 作者简介:马芳武(1960-),男,教授,博士生导师. 研究方向:汽车轻量化.E-mail: mikema@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFB0101601);吉林省产业创新专项项目(2019C041-2);吉林省省校共建计划专项项目(SXGJQY2017-7)

Multi⁃objective crashworthiness optimization design of concave triangles cell structure with negative Poisson′s ratio

Fang-wu MA1,2(),Hong-yu LIANG1,2,Ying ZHAO1,Meng YANG1,Yong-feng PU1   

  1. 1. State Key Laboratory of Automotive Simulation and Control,Jilin University, Changchun 130022,China
    2. Qingdao Automobile Research Institute, Jilin University,Qingdao 266000,China
  • Received:2018-09-06 Online:2020-01-01 Published:2020-02-06

摘要:

为设计出具有良好耐撞性的车辆碰撞吸能结构,以内凹三角形负泊松比多胞结构为研究对象,通过显式动力有限元软件 LS?DYNA建立了此吸能结构的轴向冲击有限元模型。结合最优拉丁超立方设计方法,构建了此吸能结构的峰值冲击力PCF和比吸能SEA关于长胞壁尺寸a与胞壁厚度b的多项式代理模型,采用第二代非劣排序遗传算法(NSGA?II)进行多目标优化设计,并基于适应度函数C获取一妥协解。优化结果表明:胞壁厚度比长胞壁尺寸对此吸能结构耐撞性影响更显著,通过合理匹配壁厚和长胞壁长度,能有效降低峰值冲击力,提高比吸能。

关键词: 车辆工程, 碰撞吸能, 负泊松比, 轴向冲击, 多目标优化

Abstract:

To design vehicle collision energy-absorbing structures with excellent crashworthiness, the concave triangle cell structure with negative Poisson's ratio was studied. The axial impact finite element model of the structure was established by explicit dynamic finite element software LS-DYNA. Combined with the optimal Latin hypercube design method, the polynomial surrogate model of the peak crush force (PCF) and the specific energy absorption (SEA) for horizontal size and thickness of the cell wall were constructed, respectively. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was adopted to perform the multi-objective optimization design, and a compromise solution was obtained based on the fitness function C. The results show that the wall thickness has more obvious effect on crashworthiness of the energy-absorbing structure than horizontal cell wall size. The PCF can be effectively reduced and SEA can be improved by reasonable matching wall thickness and horizontal cell wall size.

Key words: vehicle engineering, collision energy absorption, negative Poisson′s ratio, axial impact, multi-objective optimization

中图分类号: 

  • U465.9

图 1

内凹三角形负泊松比单胞结构"

图2

模型示意图和冲击加载示意图"

图3

内凹三角形负泊松比材料在面内冲击下的能量曲线"

图4

多胞材料典型的名义应力?应变曲线"

图5

内凹三角形负泊松比材料的冲击变形图"

图6

不同短胞壁高度h值的能量吸收曲线"

图 7

最优拉丁超立方样本点构建分布"

图8

9组样本点以及模型"

表1

样本点的目标响应值"

样本点 相对密度Δρ PCF/kN SEA/(kJ?kg–1
(3,1.5) 0.163 3 2.844 71 3.516
(4,2.25) 0.230 2 5.553 31 7.095
(5,3) 0.287 3 8.470 96 10.626
(6,1.25) 0.142 0 2.670 49 3.418
(7,2) 0.209 6 5.931 79 7.115
(8,2.75) 0.267 3 9.053 34 10.451
(9,1) 0.122 5 3.599 93 2.455
(10,1.75) 0.190 7 5.387 62 4.072
(11,2.5) 0.248 2 10.4531 8.650

图9

峰值冲击力的响应面"

图10

峰值冲击力的响应面"

图11

内凹三角形负泊松比多胞结构的Pareto前沿"

表2

优化结果"

模 型 a/mm b/mm PCF/kN SEA/(kJ?kg–1
初始模型 8.0 2.750 9.053 3 9.912
优化模型 5.4 2.845 8.151 7 10.233
验证模型 5.4 2.845 8.152 0 10.363
1 Zhao Y , Ma F , Yang L , et al . Study on engine hood with negative poisson's ratio architected composites based on pedestrian protection[J].SAE International Journal of Engines, 2017, 10(2): 391-404.
2 Zhang D , Fei Q , Zhang P . In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells[J]. Thin-walled Structures, 2017, 117: 199-210.
3 崔世堂, 王波, 张科 . 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报, 2017, 34(5): 919-924.
Cui Shi-tang , Wang Bo , Zhang Ke . Mechanical behavior and energy absorption of honeycomb with negative Poisson′s ratio under in-plane dynamic compression[J].Chinese Journal of Applied Mechanics, 2017, 34(5): 919-924
4 Liu W , Wang N , Luo T , et al . In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100: 84-91.
5 卢子兴, 李康 . 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21): 16-22, 39.
Lu Zi-xing , Li Kang . In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock,2017, 36(21): 16-22, 39
6 樊喜刚, 尹西岳 . 梯度蜂窝面外动态压缩力学行为与吸能特性研究[J]. 固体力学学报, 2015, 36(2): 114-122.
Fan Xi-gang , Yin Xi-yue . Mechanical behavior and energy absorption of graded honeycomb materials under out-of-plane dynamic compression[J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 114-122.
7 Wang Z , Lu Z , Yao S , et al . Deformation mode evolutional mechanism of honeycomb structure when undergoing a shallow inclined load[J]. Composite Structures, 2016, 147: 211-219.
8 Gao D , Zhang C . Theoretical and numerical investigation on in-plane impact performance of chiral honeycomb core structure[J]. Journal of Structural Integrity and Maintenance, 2018, 3(2): 95-105.
9 韩会龙, 张新春 . 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23): 223-231.
Han Hui-long , Zhang Xin-chun . In-plane dynamic impact response characteristics of periodic 4-pointstar-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23): 223-231.
10 邓小林, 刘旺玉 . 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109.
Deng Xiao-lin , Liu Wang-yu . In-plane impact dynamics analysis of sinusoidal honeycomb structure with negative poisson's ratio[J]. Journal of Vibration and Shock,2017, 36(13): 103-109.
11 王登峰, 张帅, 汪勇 . 基于疲劳和13°冲击性能的组装式车轮优化设计[J]. 吉林大学学报:工学版, 2018,48(1): 44-56.
Wang Deng-feng , Zhang Shuai , Wang Yong . Optimization design of assembled wheel based on performance of fatigue and 13° impact[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(1): 44-56.
12 宋康, 陈潇凯, 林逸 . 汽车行驶动力学性能的多目标优化[J]. 吉林大学学报:工学版, 2015, 45(2): 352-357.
Song Kang , Chen Xiao-kai , Lin Yi . Multi-objective optimization of vehicle ride dynamic behaviors[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(2): 352-357.
13 胡云峰, 王长勇, 于树友 . 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报:工学版, 2018, 48(1): 236-244.
Hu Yun-feng , Wang Chang-yong , Yu Shu-you . Structure parameters optimization of common rail system for gasoline direct injection engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(1): 236-244.
14 Fazilati J , Alisadeghi M . Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact[J]. Thin-Walled Structures, 2016, 107: 197-206.
15 Zhou G , Ma Z D , Li G , et al . Design optimization of a novel NPR crash box based on multi-objective genetic algorithm[J]. Structural & Multidisciplinary Optimization, 2016, 54(3): 673-684.
16 Santosa S P , Wierzbicki T , Hanssenb A G , et al . Experimental and numerical studies of foam-filled sections[J]. International Journal of Impact Engineering, 2000, 24(5): 509-534.
17 Ruan D , Lu G , Wang B , et al . In-plane dynamic crushing of honeycombs―a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
18 文桂林, 孔祥正, 尹汉锋 . 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5): 115-121.
Wen Gui-lin , Kong Xiang-zheng , Yin Han-feng . Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures[J]. Journal of Vibration and Shock, 2015, 34(5): 115-121.
19 Zhang P , Wang Z , Zhao L . Dynamic crushing behavior of open-cell aluminum foam with negative Poisson’s ratio[J]. Applied Physics A, 2017, 123(5): No.321.
[1] 郭孔辉,黄世庆,吴海东. 适用于高频激励的面内轮胎动态模型[J]. 吉林大学学报(工学版), 2020, 50(1): 19-28.
[2] 陈鑫,阮新建,李铭,王宁,王佳宁,潘凯旋. 基于大涡模拟的离散格式改进方法及应用[J]. 吉林大学学报(工学版), 2019, 49(6): 1756-1763.
[3] 马芳武,倪利伟,吴量,聂家弘,徐广健. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报(工学版), 2019, 49(6): 1745-1755.
[4] 靳立强, 田端洋, 田浩, 刘蒙蒙. 汽车电子稳定系统制动增力辅助技术[J]. 吉林大学学报(工学版), 2019, 49(6): 1764-1776.
[5] 王杨,宋占帅,郭孔辉,庄晔. 转动惯量试验台的惯性参数测量[J]. 吉林大学学报(工学版), 2019, 49(6): 1795-1801.
[6] 庄蔚敏,刘洋,王鹏跃,施宏达,徐纪栓. 钢铝异质自冲铆接头剥离失效仿真[J]. 吉林大学学报(工学版), 2019, 49(6): 1826-1835.
[7] 李杰, 郭文翠, 赵旗, 谷盛丰. 基于车辆响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2019, 49(6): 1810-1817.
[8] 陈百超,邹猛,党兆龙,黄晗,贾阳,石睿杨,李建桥. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报(工学版), 2019, 49(6): 1836-1843.
[9] 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1969-1976.
[10] 何仁,涂琨. 基于温度补偿气隙宽度的电磁制动器[J]. 吉林大学学报(工学版), 2019, 49(6): 1777-1785.
[11] 刘巧斌,史文库,陈志勇,骆联盟,苏志勇,黄开军. 混合可靠性模型参数的核密度和引力搜索估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1818-1825.
[12] 管欣,金号,段春光,卢萍萍. 汽车行驶道路侧向坡度估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1802-1809.
[13] 鄢挺,杨林,陈亮. AMT换挡执行机构自适应智能控制策略[J]. 吉林大学学报(工学版), 2019, 49(5): 1441-1450.
[14] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[15] 张博,张建伟,郭孔辉,丁海涛,褚洪庆. 路感模拟用永磁同步电机电流控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1405-1413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!