吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1698-1708.doi: 10.13229/j.cnki.jdxbgxb20190621
• 交通运输工程·土木工程 • 上一篇
Hua CHEN1,2(),Yao-jia CHEN1,Bin XIE1,Peng-kai WANG1,Lang-ni DENG1()
摘要:
为研究CFRP筋粘结式锚固体系的界面失效演化机制,以锚具内倾角和锚固长度为变化参数,完成了9组CFRP筋粘结式锚具组装件的静载试验。结合试件的失效模式、筋材的磨损程度和加载端粘结-滑移全过程曲线,对CFRP筋粘结式锚固体系界面失效演化机制展开详细分析,从能量角度探讨了粘结界面能量耗散情况。运用灰色关联理论分析了各影响因素对粘结强度的敏感程度,通过数学拟合给出了粘结强度回归公式,并与现有计算模型进行了比较。研究表明:对于CFRP筋粘结式锚固体系,化学胶结力仅在加载初期起作用,界面粘结应力主要由摩擦力和机械咬合力承担;相对弹性变形能受锚固长度和锚具内倾角的影响不明显,相对局部破坏能主要受锚具内倾角影响;随着锚固长度的增大,试件弹性粘结强度、极限粘结强度和残余粘结强度均有所降低;随着锚具内倾角的增大,未发生剪切破坏的试件极限粘结强度有所增大,但弹性粘结强度和残余粘结强度的变化则不明显。灰色关联分析结果表明:各参数与粘结强度的关联度由大到小依次为CFRP筋根数>锚固长度>锚具内倾角>CFRP筋间距。本文粘结强度回归公式计算结果与试验结果吻合较好。
中图分类号:
1 | 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-36. |
Ye Lie-ping, Feng Peng. Application and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36. | |
2 | 侯苏伟, 龙佩恒, 诸葛萍, 等. CFRP索股粘结型锚具锚固机理试验[J]. 中国公路学报, 2013, 26(5): 95-101. |
Hou Su-wei, Long Pei-heng, Zhu-ge Ping, et al. Experiment on mechanism of bond-type anchor for CFRP cables[J]. China Journal of Highway and Transport, 2013, 26(5): 95-101. | |
3 | Mei K H, Sun S J, Li B, et al. Experimental investigation on the mechanical properties of a bond-type anchor for carbon fiber reinforced polymer tendons[J]. Composite Structures, 2018, 201: 193-199. |
4 | 蒋田勇, 方志. CFRP筋粘结式锚具锚固性能试验[J]. 中国公路学报, 2011, 24(1): 68-77. |
Jiang Tian-yong, Fang Zhi. Experiment on anchorage performance of bond-type anchorage for CFRP tendon[J]. China Journal of Highway and Transport, 2011, 24(1): 68-77. | |
5 | Puigvert F, Crocombe A D, Gil L. Static analysis of adhesively bonded anchorages for CFRP tendons[J]. Construction and Building Materials, 2014, 61: 206-215. |
6 | Zhang B, Benmokrane B. Design and evaluation of a new bond-type anchorage system for fiber reinforced polymer tendons[J]. Canadian Journal of Civil Engineering, 2004, 31(1): 14-26. |
7 | Fang Z, Zhang K, Tu B, et al. Experimental investigation of a bond-type anchorage system for multiple FRP tendons[J]. Engineering Structures, 2013, 57: 364-373. |
8 | Jung W T, Keum M S, Kang J Y, et al. An experimental study on anchor performance of bare CFRP tendons with bond type anchor[J]. Advanced Materials Research, 2014, 1082: 408-411. |
9 | Zhang K, Fang Z, Nanni A, et al. Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J]. Journal of Composites for Construction, 2015, 19(4): 1-30. |
10 | 方志, 余庭嘉, 方亚威, 等. CFRP绞线黏结式锚具静力性能试验研究[J]. 建筑结构学报, 2018, 39(6): 167-174. |
Fang Zhi, Yu ting-jia, Fang Ya-wei, et al. Experimental study on static performance of bond-type anchorage for CFRP strand[J]. Journal of Building Structures, 2018, 39(6): 167-174. | |
11 | 方志, 龚畅, 杨剑, 等. CFRP预应力筋粘结式锚固系统的抗疲劳性能[J]. 公路交通科技, 2012, 29(7): 58-63. |
Fang Zhi, Gong Chang, Yang Jian, et al. Fatigue behavior of bond-type anchorage with CFRP tendon[J]. Journal of Highway and Transportation Research and Development, 2012, 29(7): 58-63. | |
12 | 孙志刚. 碳纤维预应力筋及拉索锚固系统抗疲劳性能的试验研究[D]. 长沙: 湖南大学土木工程学院, 2002. |
Sun Zhi-gang. Experimental study on the fatigue behavior of anchorage system for CFRP tendons[D]. Changsha: College of Civil Engineering, Hunan University, 2002. | |
13 | Xie G H, Tang Y S, Wang C M, et al. Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons[J]. Composites Part B: Engineering, 2018, 150: 47-59. |
14 | 熊文, 蒋超, 肖汝诚, 等. 基于接触滑移理论的CFRP拉索黏结型锚具精细化仿真[J]. 东南大学学报: 自然科学版, 2014, 44(6): 1218-1223. |
Xiong Wen, Jiang Chao, Xiao Ru-cheng, et al. Fine simulation of adhesive anchorage for CFRP cables based on contact-sliding theory[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(6): 1218-1223. | |
15 | Wu J, Xian G, Li H. A novel anchorage system for CFRP cable: experimental and numerical investigation[J]. Composite Structures, 2018, 194: 555-563. |
16 | 朱元林, 刘礼华, 张继文, 等. 碳纤维复合材料筋粘结型锚固系统数值模拟及失效分析[J]. 复合材料学报, 2015, 32(5): 1414-1419. |
Zhu Yuan-lin, Liu Li-hua, Zhang Ji-wen, et al. Numerical simulation and failure analysis of adhesive anchorage system for CFRP tendon[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1414-1419. | |
17 | 方志, 梁栋, 蒋田勇. 不同粘结介质中CFRP筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(6):47-51. |
Fang Zhi, Liang Dong, Jiang Tian-yong, et al. Experimental investigation on the anchorage performance of CFRP tendon in different bond mediums [J]. China Civil Engineering Journal, 2006, 39(6): 47-51. | |
18 | 方志, 王常林, 张洪侨, 等. 碳纤维绞线在活性粉末混凝土中锚固性能的试验研究[J]. 中国公路学报, 2016, 29(6): 198-206. |
Fang Zhi, Wang Chang-lin, Zhang Hong-qiao, et al. Experimental study on anchoring performance of CFRP strand in reactive powder concrete[J]. China Journal of Highway and Transport, 2016, 29(6): 198-206. | |
19 | 朱元林, 刘礼华, 张继文, 等. 碳纤维复合材料筋在不同锚固填料中的锚固性能试验研究[J]. 玻璃钢/复合材料, 2015(7): 78-82. |
Zhu Yuan-lin, Liu Li-hua, Zhang Ji-wen. et al. Experiments research on the anchor age performance of CFRP tendon in different potting material[J]. Fiber Reinforced Plastics/Composites, 2015(7): 78-82. | |
20 | 蒋田勇, 方志. 极限状态时CFRP筋粘结式锚具粘结应力分布[J]. 公路交通科技, 2007, 24(12): 75-78, 92. |
Jiang Tian-yong, Fang Zhi. Bond stress distribution of bond-type anchors for CFRP tendons under the ultimate tensile capacity[J]. Journal of Highway and Transportation Research and Development, 2007, 24(12): 75-78, 92. | |
21 | 王博, 白国良. 钢筋与再生混凝土黏结破坏过程的能量机制研究[J]. 混凝土, 2011(2): 32-35. |
Wang Bo, Bai Guo-liang. Energy mechanism of the bonding failure process between the rebars and the recycled concrete[J]. Concrete, 2011(2): 32-35. | |
22 | Wu Z S, Yuan H, Niu H D. Stress transfer and fracture propagation in different kinds of adhesive joints[J]. Journal of Engineering Mechanics, 2002, 128(5): 562-573. |
23 | Faoro M. Bearing and deformation behaviour of structural components with reinforcements comprising resin bounded glass fibre bars and conventional ribbed steel bars[A]. Int Conf on Bond in Concrete, 1992: 145-162. |
24 | 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7): 41-43, 82. |
Gao Dan-ying, Zhu Hai-tang, Xie Jing-jing. The constitutive models for bong slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 33(7): 41-43, 82. | |
25 | 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64. |
Wang Bo, Bai Guo-liang, Dai Hui-juan, et al. Experimrntal and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64. | |
26 | 孙芳芳. 浅议灰色关联度分析方法及其应用[J]. 科技信息, 2010, 2(17): 780-782. |
Sun Fang-fang. Grey relational analysis method and its application[J]. Science & Technology Information, 2010, 2(17): 780-782. |
[1] | 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588. |
[2] | 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612. |
[3] | 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215. |
[4] | 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226. |
[5] | 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890. |
[6] | 贾毅,赵人达,王永宝,李福海. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1871-1883. |
[7] | 白伦华,沈锐利,张兴标,王路. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报(工学版), 2019, 49(5): 1500-1508. |
[8] | 赵金钢,张明,占玉林,谢明志. 基于塑性应变能密度的钢筋混凝土墩柱损伤准则[J]. 吉林大学学报(工学版), 2019, 49(4): 1124-1133. |
[9] | 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123. |
[10] | 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780. |
[11] | 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734. |
[12] | 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472. |
[13] | 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140. |
[14] | 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112. |
[15] | 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752. |
|