吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1698-1708.doi: 10.13229/j.cnki.jdxbgxb20190621

• 交通运输工程·土木工程 • 上一篇    

CFRP筋粘结式锚固体系界面失效演化机制及粘结强度计算

陈华1,2(),陈耀嘉1,谢斌1,王鹏凯1,邓朗妮1()   

  1. 1.广西科技大学 土木建筑工程学院,广西 柳州 545006
    2.南宁学院 土木与建筑工程学院,南宁 530200
  • 收稿日期:2019-06-19 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 邓朗妮 E-mail:6904110@qq.com;langni666@126.com
  • 作者简介:陈华(1978-),女,教授,硕士.研究方向:新型复合材料在土木工程中的应用.E-mail:6904110@qq.com
  • 基金资助:
    国家自然科学基金项目(51568008);南宁学院科研团队项目(2018KYTD07)

Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system

Hua CHEN1,2(),Yao-jia CHEN1,Bin XIE1,Peng-kai WANG1,Lang-ni DENG1()   

  1. 1.College of Civil and Architecture Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
    2.College of Civil and Architecture Engineering, Nanning University,Nanning 530200,China
  • Received:2019-06-19 Online:2020-09-01 Published:2020-09-16
  • Contact: Lang-ni DENG E-mail:6904110@qq.com;langni666@126.com

摘要:

为研究CFRP筋粘结式锚固体系的界面失效演化机制,以锚具内倾角和锚固长度为变化参数,完成了9组CFRP筋粘结式锚具组装件的静载试验。结合试件的失效模式、筋材的磨损程度和加载端粘结-滑移全过程曲线,对CFRP筋粘结式锚固体系界面失效演化机制展开详细分析,从能量角度探讨了粘结界面能量耗散情况。运用灰色关联理论分析了各影响因素对粘结强度的敏感程度,通过数学拟合给出了粘结强度回归公式,并与现有计算模型进行了比较。研究表明:对于CFRP筋粘结式锚固体系,化学胶结力仅在加载初期起作用,界面粘结应力主要由摩擦力和机械咬合力承担;相对弹性变形能受锚固长度和锚具内倾角的影响不明显,相对局部破坏能主要受锚具内倾角影响;随着锚固长度的增大,试件弹性粘结强度、极限粘结强度和残余粘结强度均有所降低;随着锚具内倾角的增大,未发生剪切破坏的试件极限粘结强度有所增大,但弹性粘结强度和残余粘结强度的变化则不明显。灰色关联分析结果表明:各参数与粘结强度的关联度由大到小依次为CFRP筋根数>锚固长度>锚具内倾角>CFRP筋间距。本文粘结强度回归公式计算结果与试验结果吻合较好。

关键词: 桥梁工程, CFRP筋粘结式锚固体系, 界面粘结失效机制, 粘结强度, 锚固性能

Abstract:

To investigate the interface failure mechanism between CFRP tendon and epoxy mortar in the bond-type anchorage system, a total 9 specimens were designed for static load test. Two parameters were considered in the test, anchorage length and the internal inclination of anchorage. The failure mode of the specimens, the wear degree of CFRP tendon and load-slip curve in the loading end of specimens were obtained. The interface failure mechanism between CFRP tendon and epoxy mortar in the bond-type anchorage system was described in detail. The energy dissipation in the bonding interface was investigated. The grey relational theory was applied to investigate the sensitivity of parameters on bond strength. Based on the testing data, the regression formula of bond strength was fitted and compared with other existing formulas. The results show that the chemical bonding force only plays a limited role in the initial loading stage, and the interface bonding stress is mainly borne by the friction force and the mechanical bite force. The anchorage length and the internal inclination of anchorage have no obvious effect on the relative elastic deformation energy, but the relative local failure energy is mainly affected by the internal inclination of anchorage. The elastic bond strength, ultimate bond strength and residual bond strength all decrease with the anchorage length. With the increase in the inner inclination angle of the anchorage, the ultimate bond strength of the specimens without shear failure increases to a certain extent, but the elastic bond strength and residual bond strength change irregularly. The results of grey correlation analysis show that the correlation degree of each parameter in the order from large to small are the number of CFRP tendons, anchorage length, the internal inclination of anchorage and the spacing of CFRP tendons. A practical formula for calculating bond strength is derived and the calculated results are in good agreement with the experimental results.

Key words: bridge engineering, bond-type anchorage system for carbon fiber-reinforced plastics tendon, mechanism of bond failure, bond strength, anchorage property

中图分类号: 

  • U444

图1

CFRP压纹筋"

表1

试件主要设计参数"

试件编号l/mmα/(°)l'/mmD/mmR1/mmR2/mm
BTA180213226.581116.58
BTA2100215227.981117.98
BTA3150220231.471121.47
BTA480313229.381119.38
BTA5100315231.481121.48
BTA6150320236.721126.72
BTA780413232.191122.19
BTA8100415234.981124.98
BTA9150420241.971131.97

图2

锚具组装件"

图3

加载装置"

图4

失效模式"

图5

加载端荷载-滑移曲线"

图6

典型加载端粘结-滑移曲线"

表2

特征点荷载、粘结强度和滑移量"

试件编号Pe/kNPu/kNPr/ kNτe/MPaτu/MPaτr/MPase/mmsu/mmsr/mm
BTA19.0028.209.805.9718.716.500.062.332.53
BTA210.0036.409.605.3119.325.600.112.632.84
BTA38.0039.4014.402.8313.945.100.142.963.59
BTA45.8029.4010.203.8519.516.770.022.752.91
BTA68.0061.4010.562.8321.733.740.054.773.65
BTA79.0030.209.805.9720.046.500.064.354.45
BTA88.0042.2011.284.2522.405.990.043.725.18
BTA98.8830.009.883.1410.623.500.48

图7

粘结界面CFRP筋压纹肋微观受力"

图8

CFRP筋机械咬合点剪断"

表3

相对弹性变形能和相对局部破坏能"

项目BTA1BTA2BTA3BTA4BTA6BTA7BTA9
U0s'0.801.300.880.170.320.800.38
Uf'0.870.790.591.480.371.461.45

图9

锚固长度与特征粘结强度的关系"

图10

锚具内倾角与特征粘结强度的关系"

表4

粘结强度计算结果"

试件编号τu,t/MPaτu,4/MPaτu,4/τu,tτu,9/MPaτu,9/τu,tτu,10/MPaτu,10/τu,tτu,18/MPaτu,18/τu,tτu,0/MPaτu,0/τu,t
BTA118.7017.600.9413.460.729.190.4913.030.7018.130.97
BTA219.3019.190.9914.270.7410.140.5315.200.7917.700.92
BTA313.9323.171.6616.301.1612.490.8920.631.4716.631.19
BTA419.5018.400.9414.180.739.190.4713.030.6721.501.10
BTA521.6720.071.0315.040.7710.140.5215.200.7821.071.08
BTA621.7224.231.1217.170.7912.490.5820.630.9520.000.92
BTA720.0319.200.9614.900.749.190.4613.030.6520.771.04
BTA822.4020.940.9315.800.7110.140.4515.200.6819.200.86
BTA910.6025.282.3918.041.7012.491.1820.631.9513.831.30
均值18.6520.901.2215.460.9010.610.6216.290.9618.761.04
1 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-36.
Ye Lie-ping, Feng Peng. Application and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36.
2 侯苏伟, 龙佩恒, 诸葛萍, 等. CFRP索股粘结型锚具锚固机理试验[J]. 中国公路学报, 2013, 26(5): 95-101.
Hou Su-wei, Long Pei-heng, Zhu-ge Ping, et al. Experiment on mechanism of bond-type anchor for CFRP cables[J]. China Journal of Highway and Transport, 2013, 26(5): 95-101.
3 Mei K H, Sun S J, Li B, et al. Experimental investigation on the mechanical properties of a bond-type anchor for carbon fiber reinforced polymer tendons[J]. Composite Structures, 2018, 201: 193-199.
4 蒋田勇, 方志. CFRP筋粘结式锚具锚固性能试验[J]. 中国公路学报, 2011, 24(1): 68-77.
Jiang Tian-yong, Fang Zhi. Experiment on anchorage performance of bond-type anchorage for CFRP tendon[J]. China Journal of Highway and Transport, 2011, 24(1): 68-77.
5 Puigvert F, Crocombe A D, Gil L. Static analysis of adhesively bonded anchorages for CFRP tendons[J]. Construction and Building Materials, 2014, 61: 206-215.
6 Zhang B, Benmokrane B. Design and evaluation of a new bond-type anchorage system for fiber reinforced polymer tendons[J]. Canadian Journal of Civil Engineering, 2004, 31(1): 14-26.
7 Fang Z, Zhang K, Tu B, et al. Experimental investigation of a bond-type anchorage system for multiple FRP tendons[J]. Engineering Structures, 2013, 57: 364-373.
8 Jung W T, Keum M S, Kang J Y, et al. An experimental study on anchor performance of bare CFRP tendons with bond type anchor[J]. Advanced Materials Research, 2014, 1082: 408-411.
9 Zhang K, Fang Z, Nanni A, et al. Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J]. Journal of Composites for Construction, 2015, 19(4): 1-30.
10 方志, 余庭嘉, 方亚威, 等. CFRP绞线黏结式锚具静力性能试验研究[J]. 建筑结构学报, 2018, 39(6): 167-174.
Fang Zhi, Yu ting-jia, Fang Ya-wei, et al. Experimental study on static performance of bond-type anchorage for CFRP strand[J]. Journal of Building Structures, 2018, 39(6): 167-174.
11 方志, 龚畅, 杨剑, 等. CFRP预应力筋粘结式锚固系统的抗疲劳性能[J]. 公路交通科技, 2012, 29(7): 58-63.
Fang Zhi, Gong Chang, Yang Jian, et al. Fatigue behavior of bond-type anchorage with CFRP tendon[J]. Journal of Highway and Transportation Research and Development, 2012, 29(7): 58-63.
12 孙志刚. 碳纤维预应力筋及拉索锚固系统抗疲劳性能的试验研究[D]. 长沙: 湖南大学土木工程学院, 2002.
Sun Zhi-gang. Experimental study on the fatigue behavior of anchorage system for CFRP tendons[D]. Changsha: College of Civil Engineering, Hunan University, 2002.
13 Xie G H, Tang Y S, Wang C M, et al. Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons[J]. Composites Part B: Engineering, 2018, 150: 47-59.
14 熊文, 蒋超, 肖汝诚, 等. 基于接触滑移理论的CFRP拉索黏结型锚具精细化仿真[J]. 东南大学学报: 自然科学版, 2014, 44(6): 1218-1223.
Xiong Wen, Jiang Chao, Xiao Ru-cheng, et al. Fine simulation of adhesive anchorage for CFRP cables based on contact-sliding theory[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(6): 1218-1223.
15 Wu J, Xian G, Li H. A novel anchorage system for CFRP cable: experimental and numerical investigation[J]. Composite Structures, 2018, 194: 555-563.
16 朱元林, 刘礼华, 张继文, 等. 碳纤维复合材料筋粘结型锚固系统数值模拟及失效分析[J]. 复合材料学报, 2015, 32(5): 1414-1419.
Zhu Yuan-lin, Liu Li-hua, Zhang Ji-wen, et al. Numerical simulation and failure analysis of adhesive anchorage system for CFRP tendon[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1414-1419.
17 方志, 梁栋, 蒋田勇. 不同粘结介质中CFRP筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(6):47-51.
Fang Zhi, Liang Dong, Jiang Tian-yong, et al. Experimental investigation on the anchorage performance of CFRP tendon in different bond mediums [J]. China Civil Engineering Journal, 2006, 39(6): 47-51.
18 方志, 王常林, 张洪侨, 等. 碳纤维绞线在活性粉末混凝土中锚固性能的试验研究[J]. 中国公路学报, 2016, 29(6): 198-206.
Fang Zhi, Wang Chang-lin, Zhang Hong-qiao, et al. Experimental study on anchoring performance of CFRP strand in reactive powder concrete[J]. China Journal of Highway and Transport, 2016, 29(6): 198-206.
19 朱元林, 刘礼华, 张继文, 等. 碳纤维复合材料筋在不同锚固填料中的锚固性能试验研究[J]. 玻璃钢/复合材料, 2015(7): 78-82.
Zhu Yuan-lin, Liu Li-hua, Zhang Ji-wen. et al. Experiments research on the anchor age performance of CFRP tendon in different potting material[J]. Fiber Reinforced Plastics/Composites, 2015(7): 78-82.
20 蒋田勇, 方志. 极限状态时CFRP筋粘结式锚具粘结应力分布[J]. 公路交通科技, 2007, 24(12): 75-78, 92.
Jiang Tian-yong, Fang Zhi. Bond stress distribution of bond-type anchors for CFRP tendons under the ultimate tensile capacity[J]. Journal of Highway and Transportation Research and Development, 2007, 24(12): 75-78, 92.
21 王博, 白国良. 钢筋与再生混凝土黏结破坏过程的能量机制研究[J]. 混凝土, 2011(2): 32-35.
Wang Bo, Bai Guo-liang. Energy mechanism of the bonding failure process between the rebars and the recycled concrete[J]. Concrete, 2011(2): 32-35.
22 Wu Z S, Yuan H, Niu H D. Stress transfer and fracture propagation in different kinds of adhesive joints[J]. Journal of Engineering Mechanics, 2002, 128(5): 562-573.
23 Faoro M. Bearing and deformation behaviour of structural components with reinforcements comprising resin bounded glass fibre bars and conventional ribbed steel bars[A]. Int Conf on Bond in Concrete, 1992: 145-162.
24 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7): 41-43, 82.
Gao Dan-ying, Zhu Hai-tang, Xie Jing-jing. The constitutive models for bong slip relation between FRP rebars and concrete[J]. Industrial Construction, 2003, 33(7): 41-43, 82.
25 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64.
Wang Bo, Bai Guo-liang, Dai Hui-juan, et al. Experimrntal and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64.
26 孙芳芳. 浅议灰色关联度分析方法及其应用[J]. 科技信息, 2010, 2(17): 780-782.
Sun Fang-fang. Grey relational analysis method and its application[J]. Science & Technology Information, 2010, 2(17): 780-782.
[1] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
[2] 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612.
[3] 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215.
[4] 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226.
[5] 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890.
[6] 贾毅,赵人达,王永宝,李福海. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1871-1883.
[7] 白伦华,沈锐利,张兴标,王路. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报(工学版), 2019, 49(5): 1500-1508.
[8] 赵金钢,张明,占玉林,谢明志. 基于塑性应变能密度的钢筋混凝土墩柱损伤准则[J]. 吉林大学学报(工学版), 2019, 49(4): 1124-1133.
[9] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[10] 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780.
[11] 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734.
[12] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[13] 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[14] 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[15] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!