吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (3): 946-955.doi: 10.13229/j.cnki.jdxbgxb20200095

• 交通运输工程·土木工程 • 上一篇    下一篇

钢-聚丙烯混杂纤维混凝土剪力墙抗震性能

张广泰1(),张路杨1,邢国华2,曹银龙1,易宝1   

  1. 1.新疆大学 建筑工程学院,乌鲁木齐 830046
    2.长安大学 建筑工程学院,西安 710061
  • 收稿日期:2020-01-21 出版日期:2021-05-01 发布日期:2021-05-07
  • 作者简介:张广泰(1963-),男,教授,博士生导师. 研究方向:新型混凝土材料.E-mail:zgtlxh@126.com
  • 基金资助:
    国家自然科学基金项目(51968070);新疆自治区自然科学基金项目(2018D01C038)

Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall

Guang-tai ZHANG1(),Lu-yang ZHANG1,Guo-hua XING2,Yin-long CAO1,Bao YI1   

  1. 1.School of Civil Engineering,Xinjiang University,Urumqi 830046,China
    2.School of Civil Engineering,Chang'an University,Xi'an 710061,China
  • Received:2020-01-21 Online:2021-05-01 Published:2021-05-07

摘要:

通过2片钢-聚丙烯混杂纤维混凝土(SPFRC)剪力墙和1片钢筋混凝土(RC)剪力墙的低周反复加载试验,研究了SPFRC剪力墙的受力机理,分析了纤维掺量和轴压比对剪力墙破坏形态、受剪承载力、延性和耗能能力的影响。试验结果表明:在轴压比相同的条件下,混杂纤维可有效抑制剪力墙裂缝的发展,提高剪力墙的受剪承载力、变形能力、耗能能力;掺入混杂纤维的试件,随着轴压比由0.1提高至0.2,其承载能力和延性有所提高,但耗能能力有所下降;同时综合考虑混杂纤维、水平和竖向分布钢筋、混凝土斜压杆以及暗柱对受剪承载力的贡献,依据桁架-斜压杆机构机理,建立了SPFRC剪力墙受剪承载力计算公式,并通过本文及国内相关文献数据对其进行了验证,受剪承载力实测值与计算值比值的平均值为1.01,标准差为0.17,两者吻合较好。

关键词: 土木工程, 钢-聚丙烯混杂纤维, 暗柱, 剪力墙, 受剪承载力, 耗能能力, 抗震性能

Abstract:

The mechanical characteristics of the steel-plypropylene hybrid fiber concrete (SPFRC) shear walls were studied by cyclic testing on two SPFRC shear walls and one reinforced concrete (RC) shear wall under reversed cyclic loading.The effects of fiber content and axial load ratio on the failure pattern, shear capacity, ductility and energy dissipation capacity of the shear walls are analyzed. The test results show that under the same axial load ratios, the hybrid fiber can effectively restrain the development of shear wall cracks, improve the shear capacity, deformation capacity and energy dissipation capacity of the shear wall. For hybrid fiber specimens, with the increase of axial load ratio from 0.1 to 0.2, the bearing capacity and ductility are improved, but the energy dissipation capacity declined. According to the mechanism of truss-slope lever mechanism, the SPFRC shear wall shear bearing capacity calculation equation was established, in which the contribution of horizontal and vertical distribution of rebar, concrete oblique lever and concealed columns to the shear-bearing capacity are taken into consideration. This equation is verified using domestic relevant data. The average value of the ratio between measured and calculated shear bearing capacity is 1.01 and the standard deviation is 0.17, which are well matched.

Key words: civil engineering, steel-polypropylene hybrid fiber, concealed column, shear wall, shear capacity, energy dissipation capacity, seismic performance

中图分类号: 

  • TU528.01

表1

剪力墙试件主要参数"

试件编号钢纤维体积率%聚丙烯纤维掺量/(kg·m-3)

剪跨

λ

轴压

n

SWC-0-0-0.1001.10.1
SWH-1.5-1.2-0.11.51.21.10.1
SWH-1.5-1.2-0.21.51.21.10.2

图1

剪力墙试件尺寸及配筋"

表2

混凝土配合比 (kg/m3)"

试件编号混凝土强度水泥减水剂
SWC-0.1C5015538463011005.76
SWH-0.1C5015538463011006.24
SWH-0.2C5015538463011006.24

表3

纤维基本参数"

纤维

种类

长度

/mm

直径

/μm

密度

/(g·cm-3)

抗拉强度

/MPa

弹性模量

/GPa

钢纤维3330027.82≥600210
聚丙烯纤维19330.91530>3.5

表4

钢筋力学性能实测值"

钢筋种类

直径

/mm

屈服强度

/MPa

极限抗拉强度

/MPa

HRB4006505710
HRB4008510715
HRB50012650820
HRB50018550705
HRB50025530705

表5

混凝土力学性能实测值"

试件编号立方体抗压强度/MPa轴心抗压强度/MPa劈裂抗拉强度/MPa
P0S062.6040.63.90
P1.2S065.8942.74.66
P0S1.580.5052.15.16
P1.2S1.582.7054.85.96

图2

加载装置示意图"

图3

位移计布置及钢筋应变测点布置图"

图4

试件破坏形态"

图5

试件滞回曲线及骨架曲线"

表6

试件特征点处的荷载和位移值"

试件编号方向开裂屈服峰值极限延性系数
荷载/kN位移/mm荷载/kN位移/mm荷载/kN位移/mm荷载/kN位移/mm
SWC-0.1正向186.081.80408.788.94491.6015.82441.3517.241.77
反向189.952.80352.987.89427.9411.79371.1813.821.75
均值188.022.30380.868.42459.7713.81406.2715.531.76
SWH-0.1正向185.851.98434.498.52505.4613.86447.4617.982.11
反向201.322.95456.619.69544.2415.97534.9018.001.86
均值193.592.47445.559.11524.8514.92491.1817.991.99
SWH-0.2正向333.102.95575.296.89655.2210.88556.9413.221.92
反向377.104.04630.268.55638.3517.51542.6019.532.28
均值355.103.50602.787.72646.7914.20549.7716.382.10

图6

等效黏滞阻尼系数计算"

表7

试件的滞回曲线面积和等效黏滞阻尼系数"

试件编号SABC+SADC/mm2SΔOBD+SΔODF/mm2γe
SWC-0.13983.6645577.6290.114
SWH-0.19235.6617999.7020.184
SWH-0.25051.5348014.5350.101

图7

剪力墙传力机理及受剪承载力简化计算模型"

表8

剪力墙受剪承载力计算及对比结果"

方法试件编号Vtest/kNV/kNVtest/V
本文SWC-0.1427.9448.20.95
SWH-0.1505.5534..90.94
SWH-0.2638.4622.41.03
文献[21]SW0198.6208.70.95
SW1-1266.7226.41.17
SW1-2295.6237.31.24
SW1-3347.0246.31.40
SW2-1205.5255.20.80
SW2-2268.3266.11.01
SW2-3306.0275.11.11
SW3-1192.1269.90.72
SW3-2244.8280.80.88
SW3-3282.7289.80.98
1 徐礼华,李彪,池寅,等. 钢-聚丙烯混杂纤维混凝土单轴循环受压应力-应变关系研究[J].建筑结构学报,2018,39(4):140-152.
Xu Li-hua, Li Biao, Chi Yin, et al. Experimental investigation on stress-strain relation of steel-polypropylene hybrid fiber reinforced concrete subjected to uniaxial cyclic compression[J]. Journal of Building Structures, 2018,39(4):140-152.
2 张广泰,田虎学,李宝元,等. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 材料导报, 2018, 32(14): 2396-2399, 2406.
Zhang Guang-tai, Tian Hu-xue, Li Bao-yuan, et al. Deicer-frost scaling of steel-polypropylene hybrid fiber reinforced concrete[J]. Materials Review, 2018, 32(14): 2396-2399, 2406.
3 Sukontasukkul P, Pongsopha P, Chindaprasirt P, et al. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer[J]. Construction and Building Materials, 2018, 161:37-44.
4 Afroughsabet V, Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers[J]. Construction and Building Materials, 2015, 94:73-82.
5 寇佳亮,梁兴文,邓明科. 纤维增强混凝土剪力墙恢复力模型试验与理论研究[J]. 土木工程学报, 2013, 46(10):58-70.
Kou Jia-liang, Liang Xing-wen, Deng Ming-ke. Experimental and theoretical study of restoring force model of fiber reinforced concrete shear walls[J]. China Civil Engineering Journal, 2013, 46(10):58-70.
6 党争, 梁兴文, 邓明科,等. 纤维增强混凝土剪力墙抗震性能试验研究与理论分析[J]. 建筑结构学报, 2014, 35(6):12-22.
Dang Zheng, Liang Xing-wen, Deng Ming-ke, et al. Experimental and theoretical studies on seismic behavior of fiber reinforced concrete shear walls[J]. Journal of Building Structures, 2014, 35(6):12-22.
7 邓明科,寇佳亮,梁兴文,等. 延性纤维混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(7):170-177.
Deng Ming-ke, Kou Jia-liang, Liang Xing-wen, et al. Experimental investigation on aseismic behavior of ductile fiber reinforced concrete shear walls[J]. Engineering Mechanics, 2014, 31(7): 170-177.
8 Zhao Jun, Hua-hua Dun. A restoring force model for steel fiber reinforced concrete shear walls[J]. Engineering Structures, 2014, 75:469-476.
9 Carrillo J, Pincheira J A, Alcocer S M. Behavior of low-rise, steel fiber-reinforced concrete thin walls under shake table excitations[J]. Engineering Structures, 2017, 138:146-158.
10 Seo M S, Kim H S, Truong G T, et al. Seismic behaviors of thin slender structural walls reinforced with amorphous metallic fibers[J]. Engineering Structures, 2017, 152:102-115.
11 孙绪杰,潘景龙,郑文忠. 玻璃纤维增强聚合物混凝土小型空心砌块复合墙片的抗震性能[J]. 吉林大学学报:工学版,2008,38(5):1054-1059.
Sun Xu-jie, Pan Jing-long, Zheng Wen-zhong. Anti-seismic behavior of composite GFRP-concrete small hollow block wall[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(5):1054-1059.
12 齐岳,郑文忠. 低周反复荷载下核心高强混凝土柱抗震性能试验研究[J]. 湖南大学学报:自然科学版,2009,36(12):6-12.
Qi Yue, Zheng Wen-zhong. Experimental study of the seismic behavior of concrete columns with high strength core under low cyclic loading[J]. Journal of Hunan University(Natural Sciences),2009,36(12):6-12.
13 高欣,吴晓伟,田俊. 轻骨料混凝土剪力墙非线性有限元模型的构成及影响其抗震性能的因素[J]. 吉林大学学报:工学版,2015,45(5):1428-1435.
Gao Xin, Wu Xiao-wei, Tian Jun. Structure of nonlinear finite element model of lightweight aggregate concrete share wall and the factors affecting seismic performance[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5):1428-1435.
14 Hwang S J, Lee H J. Strength prediction for discontinuity regions by softened strut-and-tie model[J]. Journal of Structural Engineering, 2002,128(12):1519-1526.
15 Paulay T, Priestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York: John Wiley & Sons,1992.
16 Hwang S J, Lee H J. Strength prediction for discontinuity regions by softened strut-and-tie model[J]. Journal of Structural Engineering, 2002, 128(12):1519-1526.
17 唐兴荣,蒋永生,丁大钧. 软化桁架理论在钢纤维高强砼低剪力墙中的应用[J]. 建筑结构学报,1993(2):2-11.
Tang Xing-rong, Jiang Yong-sheng, Ding Da-jun. Applieation of the theory of softened truss to low-rise steel fiber high strength concrete shear walls[J]. Journal of Building Structures, 1993(2):2-11.
18 梅国栋,徐礼华,鲁维妙,等. 纤维掺量对混杂纤维混凝土轴心抗拉性能的影响分析[J]. 武汉大学学报:工学版,2013,46(6):752-758.
Mei Guo-dong, Xu Li-hua, Lu Wei-miao, et al. Effect of fiber content on axial tensile properties of hybrid fiber reinforced concrete[J]. Engineering Journal of Wuhan University, 2013, 46(6):752-758.
19 安玉杰,赵国藩,黄承奎. 配筋钢纤维混凝土构件承载力计算方法的研究[J].土木工程学报,1993,26(1):38-46.
An Yu-jie, Zhao Guo-fan, Huang Cheng-kui. Study on methods for calculating bearing capacity of SFRC elements reinforced with steel bars[J]. China Civil Engineering Journal, 1993, 26(1):38-46.
20 徐礼华,黄乐,韦翠梅,等. 钢-聚丙烯混杂纤维混凝土柱抗震承载力试验研究[J]. 建筑结构学报, 2014, 35(8):95-103.
Xu Li-hua, Huang Yue, Wei Cui-mei, et al. Experimental tests of seismic bearing capacity of steel-polypropylene hybrid fiber reinforced concrete columns[J]. Journal of Building Structures, 2014, 35(8):95-103.
21 夏广政,夏冬桃. 混杂纤维增强高性能混凝土剪力墙性能研究[J]. 华中科技大学学报,2008(4):103-106.
Xia Guang-zheng, Xia Dong-tao. Research on behavior of hybrid fiber reinforced high-performance concrete shear walls[J]. Journal of Huazhong University of Science and Technology, 2008(4):103-106.
[1] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[2] 刘柳,冯卫星. 基于NNBR模型的隧道盾构施工地表沉降实测与计算分析[J]. 吉林大学学报(工学版), 2021, 51(1): 245-251.
[3] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[4] 单德山,张潇,顾晓宇,李乔. 斜拉索悬链线构形的伸长量解析计算方法[J]. 吉林大学学报(工学版), 2021, 51(1): 217-224.
[5] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[6] 王勃,董元正,董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1739-1746.
[7] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[8] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[9] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[10] 张军,钱诚,郭春燕,钱玉君. 基于多源时空数据的建筑宜居性动态设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1169-1173.
[11] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[12] 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788-797.
[13] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[14] 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[15] 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!