吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2108-2120.doi: 10.13229/j.cnki.jdxbgxb20200301

• 交通运输工程·土木工程 • 上一篇    

极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析

谷拴成1(),聂红宾1,2()   

  1. 1.西安科技大学 建筑与土木工程学院,西安 710054
    2.陕西铁路工程职业技术学院 轨道工程学院,陕西 渭南 714000
  • 收稿日期:2020-05-10 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 聂红宾 E-mail:gushuanchengxakj@163.com;nhb18391382063@126.com
  • 作者简介:谷拴成(1963-),男,教授,博士生导师. 研究方向:地下结构支护理论与结构耐久性.E-mail:gushuanchengxakj@163.com
  • 基金资助:
    国家自然科学基金项目(51868075);陕西省教育厅专项基金项目(21JK0584);渭南市科技项目(2020ZDYF-JCYJ-187);陕西铁路工程职业技术学院中青年科技创新人才项目(KJRC201810)

Analysis of damage model of mortars strengthened with CFRP under ultimate freeze⁃thaw and load

Shuan-cheng GU1(),Hong-bin NIE1,2()   

  1. 1.School of Architecture and Civil Engineering,Xi′an University of Science and Technology,Xi′an 710054,China
    2.College of Rail Engineering,Shaanxi Railway Institute,Wei Nan 714000,China
  • Received:2020-05-10 Online:2021-11-01 Published:2021-11-15
  • Contact: Hong-bin NIE E-mail:gushuanchengxakj@163.com;nhb18391382063@126.com

摘要:

为了研究碳纤维复合材料(CFRP)对冻融损伤混凝土柱的修复效果,按照混凝土耐久性及碳纤维加固规范要求,对混凝土试件进行冻融0、50、100、150、200次后,采用不同修复间距、不同纤维量CFRP,对其进行修复,再进行轴压试验,以压缩荷载、竖向整体位移、膨压比等为参数研究试件微观结构下CFRP修复冻融损伤受压性能,提出了CFRP修复冻融损伤混凝土受压模型。试验结果表明:冻融循环对混凝土抗压性能影响很大,CFRP修复技术能够有效提高冻融损伤混凝土抗压承载力,最大可提高630.6%,同时,CFRP修复试件承载力的提高与修复间距无关,而与CFRP的纤维量有关。修复试件的竖向整体位移随着冻融次数的增加而增大,随着CFRP修复间距的增大而减小。膨压比随着冻融循环先减小后增大再减小,膨压比峰值从“凸”型逐渐变为“凹”的塌陷底峰值,且峰值距离逐渐减小。通过纤维修复混凝土冻融损伤微观分析,建立了混凝土粘塑性损伤模型,研究了混凝土破坏过程及荷载-应变关系,验证了模型合理性。

关键词: 土木工程, 碳纤维复合材料, 冻融循环试验, 压力试验, 微观分析, 损伤模型

Abstract:

In order to study repair effect of concrete column wrapped Carbon Fiber Reinforced Plastics (CFRP) after extreme freeze-thaw environment, according to the requirements of code of China's current concrete durability (GB/T 50476—2008) and technical specifications for strengthening concrete structures with carbon fiber reinforced polymer laminate, axial pressure test was designed by concrete members wrapped by different spacing and dosage CFRP after freeze-thaw cycle 0 times, 50 times, 50 times, 100 times, 150 times and 200 times. The compression properties of concrete repaired with CFRP were studied by sample microstructure and considering three factors: compression load, vertical overall displacement and the ratio of expansion and compression. The results show the freeze-thaw has a more significant impact on compressive strength, but the compressive strength of freezing-thawing damaged concrete can be improved effectively after CFRP repair, up to 630.6%, and the improvement of the bearing capacity of specimens repaired with CFRP is not related to the repair spacing, but to the fiber amount of CFRP. The overall vertical displacement increases with the increase of freezing-thawing times, and decreases with the increase of the repaired CFRP. With the freezing-thawing cycle, the ratio of expansion and compression first decreases, then increases and then decreases, and the first peak value first increases and then decreases, and the second peak gradually decreases from the "convex" peak gradually to the peak of the collapse of the concave, and the distance between the two peaks gradually decreases. Through microstructure analysis, thechange of the ratio of expansion and compression is mainly caused by freezing-thawing increasing compression and hoop effect of CFRP.

Key words: civil engineering, carbon fiber reinforced plastics, freez-thaw cycle test, pressure teste, microstructure analysis, break model

中图分类号: 

  • TU531

表1

川藏铁路温度调查"

里程最高温度/℃最低温度/℃里程最高温度/℃最低温度/℃
D1K222+648.94423-37DK249+995.2088-39
D1K222+672.84369-25DK250+5.32120-32
D1K222+648.94446-14DK250+12.98427-26
D3K229+81.88012-34DK264+75013-40
D3K229+102.34620-27DK264+762.32120-31
D3K229+113.45823-18DK264+780.12424-27

表2

混凝土配合参数"

配合比水泥碎石
3001857281093
碎石孔径/mm16105
筛余量3.153.91.75
直径/mm10.50.25
筛余量1.56.480.2

表3

CFRP实测力学性能"

CFRP类型抗拉强度/MPa标准尺寸/mm弹性系数/GPa延伸率 /%编号
JGN350130.072401.627
349124.502321.425

表4

试件基本参数"

组别及编号冻融次数CFRP间隙/mm试验抗压强度/(N·mm–2纤维/g
1组1?10对比组20.2
1?250对比组19.80
1?3100对比组21.2
1?4150对比组20.4
1?5200对比组20.4
2组2?10020.1
2?250020.3
2?3100019.9100
2?4150020.1
2?5200020.3
3组3?1010018.9
3?25010019.9
3?310010020.150
3?415010020.2
3?520010020.3
4组4?1020020.1
4?25020020.1
4?310020020.350
4?415020020.9
4?520020020.4

图1

不同冻融循环损伤试件"

表5

质量和动弹性模量损失表"

冻融次数/N质量损失率/%弹性模量损失率/%损伤评价
000对比组
250.249384.645适应期
502.17531.357损伤
753.841342.016损伤
1005.441869.659损伤
1256.632581.436破坏
1507.825489.326破坏
1759.131198.347破坏
20010.2314----破坏

图2

CFRP修复冻融柱"

图3

轴压试验"

图4

试件破坏形态"

表6

试件破坏特征表"

编号极限承载力/kN开裂载荷/kN破坏类型

第1次突变值

/kN

突变率β/%第2次突变值/kN突变率γ/%
混凝土CFRP混凝土CFRP
1?1283.261180.213-3条裂缝-14.4465.1--
1?2151.61146.254-5条裂缝-47.60631.4119.01488.6
1?356.11223.823-6条裂缝-14.48025.847.80785.2
1?439.87114.156-8条裂缝-4.06610.312.04130.2
1?512.2133.232-12条裂缝-1.23410.18.56127.9
2?1347.701-88.231压碎4 凹凸屈曲18.7765.4135.95139.1
2?2220.262-65.982压碎5 凹凸屈曲25.99111.8188.55485.6
2?3196.672-53.261压碎3局部屈曲51.72526.3--
2?4151.784-47.271压碎2 凹凸屈曲47.35731.2135.8489.5
2?589.231-40.236压碎未发生屈曲28.01931.460.05267.3
3?1323.314253.47812.3422条裂缝纤维断裂20.0456.299.57930.8
3?2196.407147.30514.2102条裂缝纤维断裂34.17517.4167.14285.1
3?3100.96161.58610.4994条裂缝未破坏11.20711.1--
3?461.21935.7527.3465条裂缝未破坏7.53020.358.24178.8
3?550.23124.1106.5307条裂缝未破坏15.47130.831.19362.1
4?1330.234231.16319.8144条裂缝未破坏16.8415.177.27523.4
4?2139.841103.4829.7897条裂缝未破坏41.67329.8100.83876.4
4?3112.12890.8248.4096条裂缝未破坏18.276826.4--
4?467.23157.1465.6478条裂缝未破坏11.49717.130.38845.2
4?559.63451.8815.36712条裂缝未破坏10.07816.925.10642.1

表7

承载力分析表"

冻融循环次数/n未修复损失率/%全包未修复损失率/%修复间距100 mm试件损失率/%修复间距200 mm试件损失率/%
00.0000.0000.0000.000
5046.47736.65239.25257.654
10080.19143.43668.77366.046
15085.92456.34681.06579.641
20095.68874.33784.46481.942

图5

荷载图"

图6

竖向整体位移图"

图7

CFRP修复冻融试件应力-膨胀压缩比分析"

图8

微观结构图"

图9

力学简化模型"

图10

总损失量D与应变关系"

图11

CFRP修复冻融损伤柱荷载-应变曲线"

1 岳清瑞,陈小兵,牟宏远.碳纤维材料(CFRP)加固修补混凝土结构新技术[J].工业建筑,1998(11):1-5, 34.
Yue Qing-rui,Chen Xiao-bing,Mu Hong-yuan. New technology of carbon fibre reinforced plastics on strengthening & repairing concrete structures[J]. Industrial Construction, 1998(11):1-5, 34.
2 叶列平,赵树红,李全旺,等.碳纤维布加固混凝土柱的斜截面受剪承载力计算[J].建筑结构学报,2000(2):59-67.
Ye Lie-ping, Zhao Shu-hong, Li Quan-wang,et al. Caleulation of shear strength of concrete column strengthened with carbon fibre reinforced plastics[J].Journal of Building Structures,2000(2):59-67.
3 赵彤,张景明,谢剑,等.碳纤维布改善钢筋混凝土短柱延性的试验研究[J].世界地震工程,2001(1):82-86.
Zhao Tong, Zhang Jing-ming, Xie Jian, et al. Experimentls study on the application of continuous carbon fibre reinforced plastics sheet to improve the dyctility of reinforced concrete short columns[J].World Information of Earthquake Enginering,2001(1):82-86.
4 陈少雄. 碳纤维布和角钢复合加固钢筋混凝土柱抗震性能研究[D].武汉:武汉大学土木建筑工程学院,2004.
Chen Shao-xiong. Experimental research on seismis behavior of reinforced concrete columns combination rehabilitation with bonded steel angles and carbon fibre reinforced plastics sheet[D]. Wuhan:School of Civil Engineering,Wuhan University,2004.
5 卢亦焱,童光兵,赵国藩,等.外包角钢与碳纤维布复合加固钢筋混凝土偏压柱承载力计算分析[J].土木工程学报,2006(8):19-25.
Lu Yi-yan, Tong Guang-bing, Zhao Guo-fan,et al. Analysis of the bearing capacity of RC eccentr ic compression columns encased in angle steels and strengthened with CFRP[J].China Civil Engineering Journal,2006(8):19-25.
6 顾冬生,吴刚,吴智深,等.CFRP加固高轴压比钢筋混凝土短圆柱抗震性能试验研究[J].工程抗震与加固改造,2006(6):71-77.
Gu Dong-sheng, Wu Gang, Wu Zhi-shen,et al. Experimental study on seismic performance of RC short circular columns strengthened with CFRP composites under high-level compression[J].Earthquake Resistant Engineering and Retrofitting,2006(6):71-77.
7 苑寿刚. CFRP约束带载加固混凝土柱滞回性能试验研究[D].沈阳:东北大学资源与土木工程学院,2009.
Yuan Shou-gang. Experimental study on the hysteretic behavior of preloaded concrete columns with CFRP confinement[D]. Shenyang:College of Resources and Civil Engineering,Northeastern University,2009.
8 李趁趁,高丹盈,赵军.干湿环境下FRP全裹与条带间隔加固混凝土圆柱耐久性试验研究[J].土木工程学报,2009,42(11):8-14.
Li Chen-zhen, Gao Dan-ying, Zhao Jun. Experimental study on durability of FRP entirely-wrapped concrete cylinders and FRP strip-wrapped concrete cylinders under wet-dry cycles insaltsolution[J]. China Civil Engineering Journal, 2009,42(11):8-14.
9 聂红宾. CFRP布加固冻融损伤混凝土构件力学性能研究[D].沈阳:沈阳大学,2013.
Nie Hong-bin. Research on behavior of freeze-thaw damageable concrete members strengthened by CFRP sheets[D].Shenyang:Shenyang University,2013.
10 张凯,姜福香,殷彦波.冻融循环下CFRP加固混凝土结构耐久性试验研究[J].工程建设,2015,47(1):7-11, 19.
Zhang Kai, Jiang Fu-xiang, Yin Yan-bo. Experimental study on durability of concrete structure reinforced with CFRP in freeze-thaw cycle[J]. Engineering construction,2015,47(1):7-11, 19.
11 王苏岩,宋泽林,丁荔.冻融循环与持载对CFRP加固高强混凝土梁变形性能的影响[J].建筑科学与工程学报,2017,34(2):26-32.
Wang Su-yan,Song Ze-lin,Ding Li.Influence of freeze-thaw cycles and sustained loads on deformation performance of high strength concrete beam strengthened with CFRP[J]. Journal of Architecture and Civil engineer,2017,34(2):26-32.
12 洪雷,江海鑫,王苏岩.冻融循环下预应力CFRP加固高强混凝土耐久性[J].铁道科学与工程学报,2017,14(2):227-232.
Hong Lei, Jiang Hai-xin, Wang Su-yan. Durability of high strength concrete strengthened with prestressed CFRP under freeze-thaw cycles[J]. Journal of Railway Science and Engineering,2017,14(2):227-232.
13 何媛媛,武丽,董江峰,等.CFRP加固对冻融再生混凝土短柱承载性能的影响[J].建筑材料学报, 2019, 22(3):451-458, 466.
He Yuan-yuan, Wu Li, Dong Jiang-feng,et al. The effects of CFRP reinforcement on the strength of recycled concrete column under cycled feeze-thaw environment[J]. Journal of Building Materials, 2019, 22(3):451-458, 466.
14 普通混凝土长期性能和耐久性能试验方法标准:[S]. 北京: 中国建筑工业出版社, 2009.
15 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D].北京:清华大学土木工程系,2009.
Duan An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D]. Beijing:Department of Civil Engineering,Tsinghua University, 2009.
16 杨苗苗,封建湖,程晓晗,等. 求解复杂交通流模型的低耗散中心迎风格式[J]. 计算机工程, 2019, 45(6): 37-44.
Yang Miao-miao,Feng Jian-hu,Cheng Xiao-han,et al. Low dissipation central-upwind scheme for solving complex traffic flow model[J]. Computer Engineering, 2019, 45(6): 37-44.
17 李趁趁. FRP加固混凝土结构耐久性试验研究[D].大连:大连理工大学建设工程学部,2006.
Li Chen-chen. Experimental study on durability of FRP reinforced concrete structures [D].Dalian: Faculty of Infrastructure Engineering,Dalian University of Technology,2006.
[1] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[2] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[3] 刘柳,冯卫星. 基于NNBR模型的隧道盾构施工地表沉降实测与计算分析[J]. 吉林大学学报(工学版), 2021, 51(1): 245-251.
[4] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[5] 单德山,张潇,顾晓宇,李乔. 斜拉索悬链线构形的伸长量解析计算方法[J]. 吉林大学学报(工学版), 2021, 51(1): 217-224.
[6] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[7] 王勃,董元正,董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1739-1746.
[8] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[9] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[10] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[11] 张军,钱诚,郭春燕,钱玉君. 基于多源时空数据的建筑宜居性动态设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1169-1173.
[12] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[13] 刘文权,盈亮,荣海,胡平. 基于损伤修正M⁃K模型的高强度钢成形极限预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1266-1271.
[14] 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788-797.
[15] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!