吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2343-2351.doi: 10.13229/j.cnki.jdxbgxb20210246

• 交通运输工程·土木工程 • 上一篇    

沥青路面典型裂缝湿度场数值模拟

于晓贺1,2,3(),罗蓉1,3,柳子尧4,黄婷婷1,3,束裕1,3   

  1. 1.武汉理工大学 交通与物流工程学院,武汉 430063
    2.湖北交通投资集团有限公司,武汉 430101
    3.湖北省公路工程技术研究中心,武汉 430063
    4.武汉市政工程设计研究院有限责任公司,武汉 430023
  • 收稿日期:2021-03-13 出版日期:2022-10-01 发布日期:2022-11-11
  • 作者简介:于晓贺(1993-),男,博士研究生.研究方向:道路无损检测技术.E-mail:yuxiaohe@whut.edu.cn
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2015CB060100);湖北省科技厅重点研发计划项目(2020BCA085);湖北省交通运输厅建设科技项目(2020-2-1-2)

Numerical simulation of humidity field of typical cracks in asphalt pavement

Xiao-he YU1,2,3(),Rong LUO1,3,Zi-yao LIU4,Ting-ting HUANG1,3,Yu SHU1,3   

  1. 1.School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China
    2.Hubei Communications Investment Group Co. ,Ltd. ,Wuhan 430101,China
    3.Hubei Highway Engineering Technology Research Center,Wuhan 430063,China
    4.Wuhan Municipal Engineering Design & Research Institute Co. ,Ltd. ,Wuhan 430023,China
  • Received:2021-03-13 Online:2022-10-01 Published:2022-11-11

摘要:

为明确沥青路面典型裂缝萌生与发展时的湿度状态,进行了沥青路面表面裂缝和反射裂缝的湿度场模拟,明确了表面裂缝和反射裂缝处深度与水气浓度的变化规律。研究结果表明:本文建立的双正弦函数模型可以较好地描述大气相对湿度变化规律;表面裂缝处的水气浓度低于正常路面处的水气浓度,反射裂缝处的水气浓度高于正常路面处的水气浓度,可以作为实际湿度状态下裂缝的萌生与发展规律研究和沥青路面服役性能合理评价的理论依据。

关键词: 道路工程, 沥青路面, 湿度场, 表面裂缝, 反射裂缝, 水气浓度

Abstract:

In order to clarify the humidity status of the typical cracks in the asphalt pavement during the initiation and development, the humidity field simulation results of the top-down cracks and reflection cracks of the asphalt pavement was carried out, and the variation law of depth and water vapor concentration at top-down cracks and reflection cracks was clarified. The results show that the double sine function model established can better describe the change of relative humidity of atmosphere. The moisture concentration at the top-down cracks is lower than that of the normal pavement, and the moisture concentration at the reflection cracks is higher than that on the normal pavement. This result can be used as a theoretical basis for the research on the initiation and development of cracks under actual humidity and the rational evaluation of the service performance of asphalt pavements.

Key words: road engineering, asphalt pavement, humidity field, top-down cracks, reflection cracks, water vapor concentration

中图分类号: 

  • U416.217

图1

典型沥青路面结构组成"

图2

表面裂缝与反射裂缝病害"

图3

表面裂缝和反射裂缝病害结构模型"

图4

沥青路面典型结构模型"

图5

表面裂缝和反射裂缝有限元模型"

图6

2020年7月相对湿度变化情况"

表1

中国中部地区7月每时刻平均相对湿度统计"

t/时刻相对湿度/%t/时刻相对湿度/%
平均值83.0
0∶0092.412∶0063.8
1∶0093.613∶0061.0
2∶0095.014∶0059.2
3∶0098.515∶0063.6
4∶0099.116∶0069.7
5∶0098.317∶0077.0
6∶0095.918∶0081.9
7∶0092.319∶0087.3
8∶0084.920∶0088.8
9∶0076.021∶0090.2
10∶0071.422∶0091.4
11∶0066.923∶0092.6

图7

每时刻相对湿度拟合曲线"

表2

每时刻相对湿度拟合曲线拟合参数值"

参数ABH1H2HxR2
双正弦函数0.9100.09279.2020.003.3160.985

表3

每时刻绝对湿度值"

t/时刻

温度

/℃

相对湿度/%

绝对湿度

/(g·m-3

水气浓度

/(g·mol-1

0∶0029.692.427.401.5222
1∶0028.693.626.291.4606
2∶0028.19525.961.4422
3∶0027.898.526.481.4711
4∶0027.499.126.061.4478
5∶0027.698.326.131.4517
6∶0028.795.927.081.5044
7∶0030.292.328.281.5711
8∶0031.284.927.451.5250
9∶0032.07625.641.4244
10∶0032.971.425.271.4039
11∶0033.766.924.691.3717
12∶0034.263.824.181.3433
13∶0035.06124.101.3389
14∶0035.559.224.001.3333
15∶0035.563.625.791.4328
16∶0035.069.727.541.5300
17∶0034.27729.181.6211
18∶0033.781.930.231.6794
19∶0033.487.331.721.7622
20∶0032.888.831.261.7367
21∶0032.390.230.921.7178
22∶0031.491.429.871.6594
23∶0030.592.628.831.6017

图8

每时刻绝对湿度变化规律"

表4

沥青路面各结构层扩散系数"

结构层结构类型厚度/cm4∶0014∶00
温度/℃扩散系数D/(mm2·s-1温度/℃扩散系数D/(mm2·s-1
沥青路面SMA?13426.7150.772151.0992.6387
AC?20C624.6180.753641.5511.7692
AC?25C822.6400.931433.7011.6265
基 层5%水稳层2020.9840.663826.2860.8671
3%水稳层2020.1550.636622.4030.7130

表5

典型病害处扩散系数"

病害类型t/时刻顶部温度/℃底部温度/℃平均温度/℃

扩散系数

D/(mm2·s-1

表面裂缝4:0027.78127.76027.77129.8071
14:0057.08956.99357.04134.2601
反射裂缝4:0027.76020.03523.89829.2335
14:0056.99321.64239.31831.5391

图9

4:00表面裂缝湿度场模拟结果"

图10

14:00表面裂缝湿度场模拟结果"

图11

4:00表面裂缝湿度场模拟结果"

图12

14:00表面裂缝湿度场模拟结果"

表6

不同深度处沥青路面典型病害瞬态水气浓度 (g/mol)"

t/时刻深度/cm正常道路表面裂缝反射裂缝
4∶0000.48250.48250.4825
40.51390.50380.5139
100.55550.53880.5732
140.58350.55140.6169
180.61110.56790.6601
230.64890.60140.6975
280.68960.65640.7182
330.73780.71810.7456
380.77800.77800.7810
580.96000.96000.9600
14∶0000.48240.48240.4824
40.51310.50540.5199
100.55560.53440.5740
140.58350.55230.6182
180.60720.56850.6634
230.64890.59880.7015
280.68960.65030.7352
330.73450.71280.7612
380.78230.78230.7937
580.96000.96000.9600

图13

沥青路面深度与水气浓度关系"

1 付军, 刘智鸿, 左雪娜, 等. 区域气候变化对沥青路面夏季温度效应的影响分析[J]. 重庆交通大学学报: 自然科学版, 2020, 39(2): 87-94.
Fu Jun, Liu Zhi-hong, Zuo Xue-na, et al. Analysis of influence of regional climate change on summer temperature effect of asphalt pavement[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2020, 39(2): 87-94.
2 黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4): 32-49.
Huang Xiao-ming, Zheng Bin-shuang. Research status and prospect of anti-skid performance of asphalt pavement[J]. Chinese Journal of Highway and Transport, 2019, 32(4): 32-49.
3 Luo R, Huang T T, Zhang D R, et al. Water vapor diffusion in asphalt mixtures under different relative humidity differentials[J]. Construction & Building Materials, 2017, 136: 126-138.
4 Arambula E, Caro S, Masad E. Experimental measurement and numerical simulation of water vapor diffusion through asphalt pavement materials[J]. Journal of Materials in Civil Engineering, 2010, 22(6): 588-598.
5 Xu W, Wang X C. Study on performance for fiber asphalt mixture resistance to water damage[J]. Advanced Materials Research, 2011, 204-210: 1789-1792.
6 罗蓉, 柳子尧, 黄婷婷, 等. 冻融循环对沥青混合料内水气扩散的影响[J]. 中国公路学报, 2018, 31(9): 20-26, 64.
Luo Rong, Liu Zi-yao, Huang Ting-ting, et al. The influence of freeze-thaw cycles on water vapor diffusion in asphalt mixture[J]. Journal of Highway and Transport, 2018, 31(9): 20-26, 64.
7 Luo R, Huang T T. Development of a three-dimensional diffusion model for water vapor diffusing into asphalt mixtures[J]. Construction & Building Materials, 2018, 179: 526-536.
8 Hossain M I, Tarefder R A. Determining normal and shear pull-off strength of asphalt mastic films due to diffusion of water vapor[C]∥Transportation Research Board Meeting,Washington DC,USA, 2014.
9 Rueda E J, Caro S, Caicedo B. Influence of relative humidity and saturation degree in the mechanical properties of Hot Mix Asphalt (HMA) materials[J]. Construction and Building Materials, 2017, 153: 807-815.
10 Luo R, Hou Q. Development of time-temperature-humidity superposition principle for asphalt mixtures[J]. Mechanics of Materials, 2021, 156(13): No. 103792.
11 柳子尧. 沥青混合料穿透型水气扩散影响因素研究[D]. 武汉: 武汉理工大学交通学院, 2018.
Liu Zi-yao. Research on influencing factors of asphalt mixture penetrating water vapor diffusion[D]. Wuhan: College of Technology Jiaotong, Wuhan University, 2018.
12 黄婷婷. 沥青混合料内部积聚型水气运动机理研究[D]. 武汉: 武汉理工大学交通学院, 2018.
Huang Ting-ting. Research on influencing factors of asphalt mixture penetrating water vapor diffusion[D]. Wuhan: College of Technology Jiaotong,Wuhan University, 2018.
13 薛爱新, 王洁光, 王海军,等. 高速公路沥青路面裂缝发展对路面结构性能的影响研究[J]. 中外公路, 2019, 39(3): 59-63.
Xue Ai-xin, Wang Jie-guang, Wang Hai-jun, et al. Research on the influence of highway asphalt pavement crack development on pavement structure performance[J]. China and Foreign Highway, 2019, 39(3): 59-63.
14 钱尼贵, 王端宜, 厉淡宁. 沥青路面裂缝细观渗流特性及试验研究[J]. 建筑材料学报, 2019, 22(3): 415-423.
Qian Ni-gui, Wang Duan-yi, Li Dan-ning. Micro-seepage characteristics and experimental study of cracks in asphalt pavement[J]. Journal of Building Materials, 2019, 22(3): 415-423.
15 魏淑艳, 姜炎. 耐久性基层沥青路面结构比选研究[J]. 公路工程, 2020, 45(1): 126-129, 189.
Wei Shu-yan, Jiang Yan. Comparison and Selection of durable base asphalt pavement structure[J]. Highway Engineering, 2020, 45(1): 126-129, 189.
16 Chun P, Yamane T, Tsuzuki Y. Automatic detection of cracks in asphalt pavement using deep learning to overcome weaknesses in images and gis visualization[J].Applied Sciences, 2021,11:892-901.
17 Tran V P, Tran T S, Lee H J, et al. One stage detector (RetinaNet)-based crack detection for asphalt pavements considering pavement distresses and surface objects[J]. Journal of Civil Structural Health Monitoring, 2021, 11(3):1-18.
18 陈鸿毅. 高温、潮湿地区的沥青路面破坏的原因分析[J]. 公路交通科技:应用技术版, 2015, 11(3): 51-52, 55.
Chen Hong-yi. Analysis of the reasons for the destruction of asphalt pavement in high temperature and humid areas[J]. Highway Transportation Science and Technology(Applied Technology Edition), 2015, 11(3): 51-52, 55.
19 Sun Y R, Du C, Gong H R, et al. Effect of temperature field on damage initiation in asphalt pavement: a microstructure-based multiscale finite element method[J]. Mechanics of Materials, 2020, 144(3): No. 103367.
20 Zhang Y L, Dong X C, Wang J W, et al. Study on temperature field of asphalt pavement in tongliao, inner mongolia[J]. IOP Conference Series: Earth and Environmental Science, 2020, 587(1): No. 012026.
21 杨德新. 气体分子运动论[M]. 辽宁教育出版社, 1986.
[1] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[2] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
[3] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[4] 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549.
[5] 冉武平,陈慧敏,李玲,冯立群. 干湿循环下粗粒土回弹模量演变规律及模型预估和修正[J]. 吉林大学学报(工学版), 2021, 51(6): 2079-2086.
[6] 董伟智,张爽,朱福. 基于可拓层次分析法的沥青混合料路用性能评价[J]. 吉林大学学报(工学版), 2021, 51(6): 2137-2143.
[7] 许哲谱,杨群. 基于实时路况地图的短期养护作业开始时间优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1763-1774.
[8] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[9] 王元元,孙璐,刘卫东,薛金顺. 测量路面三维纹理双目重构算法的约束改进[J]. 吉林大学学报(工学版), 2021, 51(4): 1342-1348.
[10] 彭勇,杨汉铎,陆学元,李彦伟. 基于离散元法的空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 956-964.
[11] 朱伟刚,朱超,张亚球,魏海斌. 基于卷积格网曲面拟合滤波算法的数字高程模型构建及质量评价[J]. 吉林大学学报(工学版), 2021, 51(3): 1073-1080.
[12] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[13] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
[14] 阳恩慧,徐加秋,唐由之,李奥,邱延峻. 温拌剂对沥青断裂和老化性能的影响[J]. 吉林大学学报(工学版), 2021, 51(2): 604-610.
[15] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!