吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2405-2418.doi: 10.13229/j.cnki.jdxbgxb20210266
• 计算机科学与技术 • 上一篇
Yong CHEN1,2(),Chen-tao LU1,Zhen WANG1
摘要:
针对当前基于计算机视觉的铁路异物侵限算法存在错误预警、检测效率低、无法满足轻量级部署等问题,提出了一种基于轻量级网络的铁路感兴趣区域异物侵限检测方法。首先,采用透视变换和三次函数拟合的方法检测铁轨线,通过找到铁轨所在区域,扩展划分出危险区域和安全区域,得到铁路异物侵限检测的感兴趣区域。然后,利用稀疏化和通道剪枝方法对YOLOv3模型进行压缩,构建了轻量级铁路异物检测模型。最后,通过铁路数据集及现场实验进行测试表明,本文方法具有较高的检测精度和检测速度,本文轻量级模型参数空间减小为原有的1/5,检测速度是Faster R-CNN模型的3.4倍,YOLOv3模型的1.3倍,能够快速有效地检测出不同铁路场景危险区域的异物侵限,减少了错误预警。
中图分类号:
1 | He D Q, Yao Z K, Jiang Z, et al. Detection of foreign matter on high-speed train underbody based on deep learning[J]. IEEE Access, 2019, 7: 183838-183846. |
2 | 王瑞, 史天运, 包云. 一种基于视频的铁路周界入侵检测智能综合识别技术研究[J].仪器仪表学报, 2020, 41(9): 188-195. |
Wang Rui, Shi Tian-yun, Bao Yun. Research on an intelligent comprehensive recognition technology in railway perimeter intrusion detection based on video[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 188-195. | |
3 | Simona F, Eduardo F, Francesca D C, et al. Railways track characterization using ground penetrating radar [J].Procedia Engineering, 2016, 143:1193-1200. |
4 | Dhiraj S, Omaka R. Object drop detection on railway track through rayleigh wave sensing using laser vibrometer[J].IEEE Transactions on Vehicular Technology, 2018, 67(10): 9158-9172. |
5 | Alexey T, Aleksandrs R, Viktors M. Assessment of cracks in pre-stressed concrete railway sleepers by ultrasonic testing[J]. Procedia Computer Science, 2019, 149: 324-330. |
6 | Niu H X, Hou T. Fast detection study of foreign object intrusion on railway track[J]. Archives of Transport, 2018, 46(3): 79-89. |
7 | 徐谦, 李颖, 王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报: 工学版, 2019, 49(5): 1661-1667. |
Xu Qian, Li Ying, Wang Gang. Pedestrian-vehicle detection based on deep learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1661-1667. | |
8 | Li Y D, Dong H, Li H G,et al. Multi-block SSD based on small object detection for UAV railway scene surveillance[J]. Chinses Journal of Aeronautics, 2020, 33(6): 1747-1755. |
9 | 徐岩, 陶慧青, 虎丽丽. 基于Faster R-CNN网络模型的铁路异物侵限检测算法研究[J]. 铁道学报, 2020, 42(5): 91-98. |
Xu Yan, Tao Hui-qing, Hu Li-li. Railway foreign body intrusion detection based on faster R-CNN network model[J]. Journal of the China Railway Society, 2020, 42(5): 91-98. | |
10 | 华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J].光学学报, 2018, 38(12): 221-231. |
Hua Xia, Wang Xin-qing, Wang Dong, et al. Multi-objective detection of traffic scene based on improved SSD[J]. Acta Optica Sinica, 2018, 38(12): 221-231. | |
11 | Qi H Y, Xu T H, Wang G, et al. MYOLOv3-Tiny: a new convolutional neural network architecture for real-time detection of track fasteners[J]. Computers in Industry, 2020, 123: No. 103303. |
12 | 王玮, 朱力强. 基于特征图裁剪的高铁周界入侵实时检测算法[J].铁道学报, 2019, 41(9): 74-80. |
Wang Wei, Zhu Li-qiang. Real-time instrusion detection algorithm for high-speed railway based on feature map pruning[J]. Journal of the China Railway Society, 2019, 41(9): 74-80. | |
13 | Daniel S R, Ivan O P, Arturo O L. Automatic region of interest segmentation for breast thermogram image classification[J]. Pattern Recognition Letters, 2020, 135: 72-81. |
14 | Karakose M, Yaman O, Murat K, et al. A new approach for condition monitoring and detection of rail components and rail track in railway[J]. International Journal of Computational Intelligence Systems, 2018, 11(1): 830-845. |
15 | Huang Y P, Li Y W, Ci W Y. Lane detection based on inverse perspective transformation and kalman filter[J]. KSII Transactions on Internet and Information Systems, 2018, 12(2): 643-661. |
16 | . 标准轨距铁路建筑限界 [S]. |
17 | Redmon J, Farhadi A. YOLOv3: an Incremental Improvement[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, 2018. |
18 | Zhang X L, Dong X P, Wei Q J, et al. Real-time object detection algorithm based on improved YOLOv3[J]. Journal of Electronic Imaging, 2019, 28(5): No. 053022. |
19 | Liu Z, Li J, Shen Z, et al. Learning efficient convolutional networks through network slimming[C]∥Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2736-2744. |
20 | 李新春, 王藜谚, 王浩童. 基于3DCNN的CSI-cluster室内指纹定位算法[J]. 重庆邮电大学学报:自然科学版, 2020, 32(3): 345-355. |
Li Xin-chun, Wang Li-yan, Wang Hao-tong. CSI-cluster indoor fingerprint localization algorithm based on 3DCNN[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(3): 345-355. | |
蔡哲栋, 应娜, 郭春生, 等.YOLOv3剪枝模型的多人姿态估计[J]. 中国图象图形学报, 2021, 26(4): 837-846. | |
Cai Zhe-dong, Ying Na, Guo Chun-sheng, et al. Research on multiperson pose estimation combined with YOLOv3 pruning model[J]. Journal of Image and Graphics, 2021, 26(4): 837-846. | |
22 | 刘高天, 段锦, 范祺, 等. 基于改进RFBNet算法的遥感图像目标检测[J]. 吉林大学学报:理学版, 2021, 59(5): 1188-1198. |
Liu Gao-tian, Duan Jin, Fan Qi, et al. Target detection for remote sensing image based on improved RFBNet algorithm[J]. Journal of Jilin University (Science Edition), 2021, 59(5): 1188-1198. | |
袁梅, 全太锋, 黄俊, 等. 基于卷积神经网络的烟雾检测[J]. 重庆邮电大学学报:自然科学版, 2020, 32(4): 620-629. | |
Yuan Mei, Quan Tai-feng, Huang Jun, et al. Smoke detection based on convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 620-629. |
[1] | 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841. |
[2] | 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880. |
[3] | 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871. |
[4] | 赵宏伟,张健荣,朱隽平,李海. 基于对比自监督学习的图像分类框架[J]. 吉林大学学报(工学版), 2022, 52(8): 1850-1856. |
[5] | 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888. |
[6] | 胡丹,孟新. 基于时变网格的对地观测卫星搜索海上船舶方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1896-1903. |
[7] | 商拥辉,徐林荣,陈钊锋. 高铁刚性桩⁃筏地基的固结特性及影响因素[J]. 吉林大学学报(工学版), 2022, 52(7): 1588-1597. |
[8] | 王军,徐彦惠,李莉. 低能耗支持完整性验证的数据融合隐私保护方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1657-1665. |
[9] | 周丰丰,张亦弛. 基于稀疏自编码器的无监督特征工程算法BioSAE[J]. 吉林大学学报(工学版), 2022, 52(7): 1645-1656. |
[10] | 康耀龙,冯丽露,张景安,陈富. 基于谱聚类的高维类别属性数据流离群点挖掘算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1422-1427. |
[11] | 王文军,余银峰. 考虑数据稀疏的知识图谱缺失连接自动补全算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1428-1433. |
[12] | 陈雪云,贝学宇,姚渠,金鑫. 基于G⁃UNet的多场景行人精确分割与检测[J]. 吉林大学学报(工学版), 2022, 52(4): 925-933. |
[13] | 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890. |
[14] | 李大湘,陈梦思,刘颖. 基于STA⁃LSTM的自发微表情识别算法[J]. 吉林大学学报(工学版), 2022, 52(4): 897-909. |
[15] | 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896. |
|