吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (8): 1872-1880.doi: 10.13229/j.cnki.jdxbgxb20210961
• 计算机科学与技术 • 上一篇
白天1,2(),徐明蔚3,刘思铭4,张佶安3,王喆1,2()
Tian BAI1,2(),Ming-wei XU3,Si-ming LIU4,Ji-an ZHANG3,Zhe WANG1,2()
摘要:
争议焦点是诉辩双方存在争议的焦点问题,是驱动案件审理、纠纷解决的主线和枢纽。准确快速地归纳争议焦点有利于提高庭审质量和效率,达到支撑“智慧司法”建设的效果。本文提出了一个端到端的模型来解决这个问题,模型基于深度神经网络对诉辩双方文本语义信息进行深层理解,通过结合字词级与句子级信息,同时进行句子级的矛盾检测、分类与完整诉辩文本的矛盾分类,通过基于规则的方法将二者结果融合,最终识别出诉辩文本中存在的全部争议焦点。在8个真实诉辩文本数据集上的实验结果表明:本文模型可以快速准确地识别出诉辩双方存在的争议焦点,与此领域当前主流方法相比,在识别准确率上有较大提升,对诉辩文本争议焦点的智能化识别提出了一个有效的新路径。
中图分类号:
1 | 蔡立东. 智慧法院建设: 实施原则与制度支撑[J]. 中国应用法学, 2017(2): 19-28. |
Cai Li-dong. Construction of intellectual court: principle of implementation and institutional support[J]. China Journal of Applied Jurisprudence, 2017(2): 19-28. | |
2 | 蔡立东. 信息技术创新开启法学研究新时代[J]. 中国社会科学文摘, 2018(6): 121-122. |
Cai Li-dong. New era of jurisprudential research launched by information technology innovation[J]. Chinese Social Science Digest, 2018(6): 121-122. | |
3 | Zhong H, Xiao C, Guo Z, et al. Overview of CAIL2018: legal judgment prediction competition[J]. arXiv Preprint arXiv:. |
4 | Tran V, Nguyen M L, Satoh K. Building legal case retrieval systems with lexical matching and summarization using a pre-trained phrase scoring model[C]∥Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law, Montreal, Canada, 2019: 275-282. |
5 | Kim M Y, Goebel R. Two-step cascaded textual entailment for legal bar exam question answering[C]∥Proceedings of the 16th Edition of the International Conference on Articial Intelligence and Law, London, United Kingdom, 2017: 283-290. |
6 | Kort F. Predicting supreme court decisions mathematically: a quantitative analysis of the "right to counsel" cases[J]. American Political Science Review, 1957, 51(1): 1-12. |
7 | Gardner A L. An artificial intelligence approach to legal reasoning[D]. San Francisco: Stanford Law School, Stanford University, 1984. |
8 | Zhong H, Xiao C, Tu C, et al. How does NLP benefit legal system: a summary of legal artificial intelligence[J]. arXiv Preprint arXiv: . |
9 | 欧阳丹彤, 肖君, 叶育鑫. 基于实体对弱约束的远监督关系抽取[J]. 吉林大学学报: 工学版, 2019, 49(3):912-919. |
Dan-tong Ou-yang, Xiao Jun, Ye Yu-xin. Distant supervision for relation extraction with weak constraints of entity pairs[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3):912-919. | |
10 | 刘桂霞,王沫沅,苏令涛,等.基于深度神经网络的蛋白质相互作用预测框架[J].吉林大学学报: 工学版, 2019, 49(2): 570-577. |
Liu Gui-xia, Wang Mo-yuan, Su Ling-tao, et al. Prediction of protein-protein interactions based on deep neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 570-577. | |
11 | Chen H, Cai D, Dai W, et al. Charge-based prison term prediction with deep gating network[C]∥Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, HongKong, China, 2019: 6362-6367. |
12 | Luo B, Feng Y, Xu J, et al. Learning to predict charges for criminal cases with legal basis[C]∥Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 2727-2736. |
13 | Zhong H, Guo Z, Tu C, et al. Legal judgment prediction via topological learning[C]∥Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 3540-3549. |
14 | Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J]. Journal of the Association for Information Science & Technology, 2010, 41(6): 391-407. |
15 | Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2013, 3(7): 993-1022. |
16 | Hu B T, Lu Z D, Hang L, et al. Convolutional neural network architectures for matching natural language sentences[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2042-2050. |
17 | Feng M, Xiang B, Glass M R, et al. Applying deep learning to answer selection: a study and an open task[C]∥EEE Workshop on Automatic Speech Recognition and Understanding, Scottsdale, USA, 2015: 813-820. |
18 | Mueller J, Thyagarajan A. Siamese recurrent architectures for learning sentence similarity[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2786-2792. |
19 | Yin W, Schütze H, Xiang B, et al. ABCNN: attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 259-272. |
20 | Wang Z, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences[C]∥Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 4144-4150. |
21 | Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[J]. arXiv Preprint arXiv: . |
22 | Chen Y. Convolutional neural network for sentence classification[D]. Waterloo: University of Waterloo, 2015. |
23 | Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. |
24 | Cho K, van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: . |
25 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA,2017: 6000-6010. |
26 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
27 | Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification[C]∥Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, USA, 2016: 1480-1489. |
[1] | 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871. |
[2] | 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896. |
[3] | 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890. |
[4] | 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173. |
[5] | 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837. |
[6] | 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791. |
[7] | 赵亚慧,杨飞扬,张振国,崔荣一. 基于强化学习和注意力机制的朝鲜语文本结构发现[J]. 吉林大学学报(工学版), 2021, 51(4): 1387-1395. |
[8] | 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369. |
[9] | 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054. |
[10] | 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727. |
[11] | 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711. |
[12] | 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322. |
[13] | 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754. |
[14] | 周炫余, 刘娟, 邵鹏, 罗飞, 刘洋. 基于层次过滤模型的中文指代消解[J]. 吉林大学学报(工学版), 2016, 46(4): 1209-1215. |
[15] | 胡冠宇, 乔佩利. 基于云群的高维差分进化算法及其在网络安全态势预测上的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 568-577. |
|