吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 891-896.doi: 10.13229/j.cnki.jdxbgxb20200933

• 计算机科学与技术 • 上一篇    

增强边缘检测图像算法在多书识别中的应用

刘铭1,2(),杨雨航1,邹松霖1,肖志成1,张永刚2   

  1. 1.长春工业大学 数学与统计学院,长春 130012
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
  • 收稿日期:2020-12-04 出版日期:2022-04-01 发布日期:2022-04-20
  • 作者简介:刘铭(1979-),男,教授,博士.研究方向:深度学习,图像处理,大数据分析与数据挖掘.E-mail:jlcclm@163.com
  • 基金资助:
    国家自然科学基金项目(61503150);吉林省自然科学基金项目(20200201157JC);吉林省教育厅“十三五”科学技术项目(JJKH20191295KJ);中央高校基本科研业务费资助项目(93K172020K19)

Application of enhanced edge detection image algorithm in multi-book recognition

Ming LIU1,2(),Yu-hang YANG1,Song-lin ZOU1,Zhi-cheng XIAO1,Yong-gang ZHANG2   

  1. 1.School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
  • Received:2020-12-04 Online:2022-04-01 Published:2022-04-20

摘要:

随着图书的借阅量逐渐增加,国内图书馆基本都应用了自助借还系统,但在借还书过程中仍存在着许多异常的现象,如多书识别准确率不高、图书数目识别不准确等。针对上述问题,本文提出了一种基于增强边缘检测图像的多书识别算法。该算法使用2×2的卷积核与边缘检测图像做卷积,增强图像内的直线信息,通过检测图像内书籍边缘数量,并辅助检测书脊边缘来进行多书识别。其中,单书识别准确率达94.0%,多书识别准确率达92.9%,综合识别准确率为93.8%。该方法具有较高的实用性,可以用于完成多书识别任务。

关键词: 计算机应用技术, 边缘提取, 直线检测, 多书识别, 图像增强

Abstract:

With the gradual increase in the amount of books borrowed, domestic libraries have basically applied the self-help borrowing and returning system, but there are still many abnormal phenomena in the process of borrowing and returning books, such as the low accuracy of the identification of many books and the inaccurate identification of the number of books. In this paper, a multi-book recognition algorithm based on enhanced edge detection is proposed. This algorithm uses the convolution kernel of 2×2 to convolve with the edge detection image, so as to enhance the line information in the image, detect the number of book edges in the image, and assist the detection of the spine edge to carry out multi-book recognition. Among them, the accuracy of single book recognition is 94.0%, that of multi-book recognition is 92.9%, and that of comprehensive recognition is 93.8%. This method has high practicability and can be used to complete multi-book recognition task.

Key words: computer application technology, edge extraction, line detection, multi-book recognition, image enhancement

中图分类号: 

  • TP183

图1

单本正常书灰度图与边缘检测图像示例"

图2

单本异常书灰度图与边缘检测图像示例"

图3

多本书灰度图与边缘检测图像示例"

图4

预处理步骤图"

图5

边缘检测图像增强结果"

图6

滤波效果图"

图7

投影示意图"

图8

L2与L3均为算法检测出的直线"

图9

书夹书存在明显特征"

图10

书籍实际区域"

图11

投影示意图"

图12

图像增强效果图"

表1

多种边缘检测算子的识别准确率比较 (%)"

Canny

算子

LOG

算子

Sobel

算子

Robert

算子

单书92.06494.092.0
多书89.378.660.746.4
综合91.37082.576.3

表2

针对Canny算子准确率结果 (%)"

使用原始边缘

检测图像

使用增强的边缘

检测图像

单书92.094.0
多书89.392.9
综合91.393.8
1 丁晓燕. 图书馆自助借还系统的比较分析[J]. 图书情报工作, 2018, 62(22): 78-81.
Ding Xiao-yan. Comparative analysis of library self-check system[J]. Library and Information Service, 2018, 62(22): 78-81.
2 黄敏聪. 图书馆分布式借还书系统分析[J]. 图书情报工作, 2012, 56 (1): 102-106.
Huang Min-cong. Distributed system in books circulation of libraries[J]. Library And Information Service, 2012, 56 (1): 102-106.
3 Yuan K H, Hong A C, Ang M, et al. Unmanned library: an intelligent robotic books retrieval & return system utilizing RFID tags[C]∥IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 2002: 1-5.
4 齐凌, 宓永迪. RFID自助借还系统使用情况分析─以浙江图书馆为例[J]. 图书馆建设, 2011, 33(10): 77-79.
Qi Ling, Mi Yong-di. Analysis on the utilization situation of RFID self-service check-out system-taking Zhejiang library as an example[J]. Library Construction, 2011, 33(10): 77-79.
5 Bahri S, Ibrahim A. RFID in libraries: a case study on implementation[J]. Library Hi-Tech News, 2013, 30(5): 21-26.
6 Coyle K. Management of RFID in libraries[J]. Journal of Academic Librarianship, 2005, 31(5): 486-489.
7 San Francisco Public Library Technology and Privacy Advisory Committee. Radio Frequency Identification and the San Francisco Public Library: Summary Report[M]. New York: American Academic Press, 2005.
8 Molnar D, Wagner D. Privacy and security in library RFID: issues, practices, and architectures[C]∥Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS Washington, DC, USA, 2004: 1-20.
9 刘喜球. 论网络环境下图书馆自助借阅的几种发展模式[J]. 图书馆学研究, 2018, 38(16): 31-35.
Liu Xi-qiu. On several development models of library's self-service borrowing and reading[J]. Research on Library Science, 2018, 38(16): 31-35.
10 陈章. 我国24小时自助图书馆的发展困境与对策研究[D]. 青岛:青岛科技大学传媒学院, 2018.
Chen Zhang. Study on the development predicaments and strategies of China's 24-hour self-service libraries[D]. Qingdao: College of Communication, Qingdao University of Science and Technology, 2018.
11 肖宇锋, 江洪. 我国自助图书馆服务理论与实践现状分析[J]. 图书馆学研究, 2011, 31(18): 60-63.
Xiao Yu-feng, Jiang Hong. Analysis on the current situation of the theory and practice of self-service library service in my country[J]. Research on Library Science, 2011, 31(18): 60-63.
12 姜元鹏, 王群, 史慧丹. 图书馆自助借还书系统的测试与评析[J]. 农业图书情报学刊, 2015, 27(12): 49-53.
Jiang Yuan-peng, Wang Qun, Shi Hui-dan. Testing and analysis of self-cheek system in libraries[J]. Journal of Library and Information Sciences in Agriculture, 2015, 27(12): 49-53.
13 Peilegrino F A, Vanzdla W. Edge detection revisited[J]. IEEE Trans on Systems,Man and Cyberrnetics, 2004, 34(3): 1500-1518.
14 Ziou D . Tabbone S. Edge detection techniques--an overview[J]. International Journal of Pattern Recognition and Image Analysis, 1998, 8(4): 537-559.
15 Gupta S, Mazumdar S G. Sobel edge detection algorithm[J]. International journal of computer science and management Research, 2013, 2(2): 1578-1583.
16 Shrivakshan G T, Chandrasekar C. A comparison of various edge detection techniques used in image processing[J]. International Journal of Computer Science Issues, 2012, 9(5): 269-276.
17 宋人杰, 刘超, 王保军. 一种自适应的Canny边缘检测算法[J]. 南京邮电大学学报: 自然科学版, 2018, 38(3): 72-76.
Song Ren-jie, Liu Chao, Wang Bao-jun. Adaptive Canny edge detection algorithm[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2018, 38(3): 72-76.
[1] 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890.
[2] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[3] 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837.
[4] 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791.
[5] 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369.
[6] 蒋华伟,杨震,张鑫,董前林. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181.
[7] 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054.
[8] 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727.
[9] 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711.
[10] 刘富,刘璐,侯涛,刘云. 基于优化MSR的夜间道路图像增强方法[J]. 吉林大学学报(工学版), 2021, 51(1): 323-330.
[11] 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322.
[12] 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754.
[13] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[14] 李健, 李赫宇, 姚汝婧, 吴林. 基于均值滤波的改进 Canny 算法在核磁共振图像边缘检测中的应用[J]. 吉林大学学报(工学版), 2016, 46(5): 1704-1709.
[15] 胡冠宇, 乔佩利. 基于云群的高维差分进化算法及其在网络安全态势预测上的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 568-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!