吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 2089-2098.doi: 10.13229/j.cnki.jdxbgxb.20210983

• 交通运输工程·土木工程 • 上一篇    

基于改进遗传算法的挤扩支盘群桩优化方法

惠迎新1,2,3(),陈嘉伟1   

  1. 1.宁夏大学 土木与水利工程学院,银川 750021
    2.宁夏交通建设股份有限公司,银川 750004
    3.宁夏道路养护工程技术研究中心,银川 750004
  • 收稿日期:2021-09-28 出版日期:2023-07-01 发布日期:2023-07-20
  • 作者简介:惠迎新(1985-),男,教授,博士.研究方向:桥梁抗震与桥梁结构分析.E-mail: huiyx@seu.edu.cn
  • 基金资助:
    宁夏回族自治区重点研发计划重点项目(2020BFG02005);宁夏自然科学基金项目(2023AAC03037)

Squeezed branch pile groups optimization method based on improved genetic algorithm

Ying-xin HUI1,2,3(),Jia-wei CHEN1   

  1. 1.School of Civil and Hydraulic Engineering,Ningxia University,Yinchuan 750021,China
    2.Ningxia Communications Construction Co. ,Ltd. ,Yinchuan 750004,China
    3.Ningxia Engineering Technology Research Center for Maintenance,Yinchuan 750004,China
  • Received:2021-09-28 Online:2023-07-01 Published:2023-07-20

摘要:

采用改进遗传算法对高层建筑的挤扩支盘群桩进行优化设计,将计算得到的群桩桩顶轴力根据大小进行分组,以各组基桩中所含承力盘数量作为遗传算法中的设计变量,建立了以群桩承力盘数量最少为目标函数,将群桩竖向承载力、最大沉降值、沉降差作为约束条件的挤扩支盘群桩优化模型。借助Python语言对ABAQUS进行二次开发,建立挤扩支盘群桩自动优化平台求解上述优化模型,获得最优群桩布置方法。结合算例表明,优化后的挤扩支盘群桩基础在承力盘数目减少的同时能降低差异沉降,使得筏板变形和桩顶受力更为均匀,有利于结构的安全和正常使用。

关键词: 岩土工程, 挤扩支盘桩, 桩基优化, 遗传算法, 变刚度调平

Abstract:

The disk-shaped settlement distribution of pile group may cause secondary stress, which possibly leads to overall tilting and cracking of the building. Therefore, it is necessary to optimize the design of the squeezed branch pile group. Based on this, we took an improved genetic algorithm to refine the method. The calculated top axial force of pile group was grouped according to the sizes, the number of bearing discs in each group of piles were used as the design variables. Then, a model with the minimum-number discs subject to the constraints of the bearing capacity and the maximum settlement and settlement difference was built. With the help of Python language, ABAQUS was developed to establish an automatic optimization platform to solve the above optimization model and obtain the best pile group arrangement. Result shows that the optimized pile group foundation can reduce the number of bearing discs while decreasing the differential settlement, leading to the uniform deformation of the raft slab and pile top forces, which are beneficial to use the structure securely.

Key words: geotechnical engineering, squeezed branch pile, pile foundation optimization, genetic algorithm, variable stiffness leveling

中图分类号: 

  • TU473.1

图1

染色体编码示意图"

图2

种群交叉操作示意图"

图3

种群变异操作示意图"

图4

挤扩支盘群桩优化流程"

表1

有限元计算的模型参数"

类别厚度/mγ/(kN·m-3E/MPaν/kPac/kPaφ/(°)
桩身-25.03.0×1040.15--
承台1.525.03.15×1040.15--
土13.518.024.60.308.28.3
土25.018.527.10.3015.418.0
土315.019.036.00.3028.020.8
土420.019.340.00.3030.022.5

图5

挤扩支盘群桩基础示意图(单位: m)"

图6

挤扩支盘群桩基础整体模型"

图7

桩筏基础区域划分"

表2

群桩分组情况"

组别G1G2G3G4G5G6G7G8
桩数91612842084

图8

挤扩支盘桩特征参数示意图(单位: m)"

图9

群桩优化设计方案示意图"

表3

承力盘分布情况"

承力盘数G1G2G3G4G5G6G7G8
设计承力盘数44444444
优化承力盘数64200000

图10

优化设计前后筏板沉降值对比"

表4

群桩基础优化结果对比"

方案最大沉降值/mm最小沉降值/mm沉降差异值/mm桩顶轴力最大值/kN桩顶轴力最小值/kN桩顶轴力差异值/kN
设计方案70.157.612.52381.41056.61324.8
优化方案72.164.57.61572.31154.2418.1

图11

沿中心线处桩顶沉降分布"

图12

沿中心线处桩顶轴力分布"

1 刘金砺. 高层建筑地基基础概念设计的思考[J]. 土木工程学报, 2006, 39(6): 100⁃105.
Liu Jin-li. Review and optimization of the conceptual design of foundations for high-rise buildings[J].China Civil Engineering Journal, 2006, 39(6): 100-105.
2 郑一峰, 毛健, 梁世忠, 等. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报: 工学版, 2017, 47(4): 1075-1081.
Zheng Yi-feng, Mao Jian, Liang Shi-zhong, et al. Negative skin friction of pile foundation considering soil consolidation in high fill site[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(4): 1075-1081.
3 . 建筑桩基技术规范 [S].
4 Leung Y F, Klar A, Soga K. Theoretical study on pile length optimization of pile groups and piled rafts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 319-330.
5 Leung Y F, Klar A, Soga K, et al. Superstructure-foundation interaction in multi-objective pile group optimization considering settlement response[J]. Canadian Geotechnical Journal, 2017, 54(5): 1408-1420.
6 Jahromi S G, Hoseini A. Optimization of bearing capacity and unsymmetrical settlement of vertical pile group using genetic algorithm[J]. Journal of Structural and Construction Engineering, 2016, 3(1): 59-71.
7 张治国, 张瑞, 黄茂松, 等. 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354⁃2368.
Zhang Zhi-guo, Zhang Rui, Huang Mao-song, et al. Optimization analysis of pile group foundation based on controlling differential settlement and axial stiffness under vertical loads[J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
8 Rasim T, Cihan Ö. Optimization of pile groups under vertical loads using grey wolf optimizer[J]. Politeknik Dergisi, 2019: 19-32.
9 韩小雷, 陈贤才, 黄狄昉. 基于拓扑优化方法实现桩筏基础的变刚度调平[J]. 华中科技大学学报: 自然科学版, 2020, 48(4): 24-29.
Han Xiao-lei, Chen Xian-cai, Huang Di-fang. Variable stiffness leveling of piled raft foundation based on topology optimization method[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(4): 24-29.
10 张武, 迟铃泉, 高文生, 等. 变刚度桩筏基础变形特性试验研究[J]. 建筑结构学报, 2010, 31(7): 94-102.
Zhang Wu, Chi Ling-quan, Gao Wen-sheng, et al. Experimental study on deformation characteristics of piles with variable stiffness piles[J]. Journal of Building Structures, 2010, 31(7): 94-102.
11 钱晓丽, 张建勋, 林向宇. 高层建筑桩筏基础变刚度调平设计应用[J]. 厦门理工学院学报, 2011, 19(4): 55-60.
Qian Xiao-li, Zhang Jian-xun, Lin Xiang-yu. Application of variable rigidity design for balance settlement in piled raft foundation of high-rise buildings[J]. Journal of Xiamen University of Technology, 2011, 19(4): 55-60.
12 Nguyen D D C, Kim D S, Jo S B. Parametric study for optimal design of large piled raft foundations on sand[J]. Computers and Geotechnics, 2014, 55: 14-26.
13 李金良, 李振宝, 崔伟, 等. 变刚度布桩群桩基础的承载特性[J]. 济南大学学报: 自然科学版, 2020, 34(5): 475-481.
Li Jin-liang, Li Zhen-bao, Cui Wei, et al. Load characteristics of pile group foundation with variable stiffness[J]. Journal of University of Jinan(Science and Technology), 2020, 34(5): 475-481.
14 曹金凤, 王旭春, 孔亮. Python语言在Abaqus中的应用[M]. 北京: 机械工业出版社, 2011: 177-274.
15 刘金波, 黄强. 建筑桩基技术规范理解与应用[M]. 北京: 中国建筑工业出版社, 2008: 171-172.
16 钱德玲. 挤扩支盘桩受力性状的研究[J]. 岩石力学与工程学报, 2003(3): 494-499.
Qian De-ling. Study on bearing behavior of squeezed branch pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(3): 494-499.
17 刘晓峰, 程耿东. 桩基础优化设计的模块化方法[J]. 计算力学学报, 2012, 29(4): 487-493.
Liu Xiao-feng, Cheng Geng-dong. Modular method of pile foundation design optimization[J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 487-493.
18 雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 2版. 西安: 西安电子科技大学出版社, 2014: 43-59.
19 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报: 工学版, 2017, 47(3): 751-755.
Wang Zhan-zhong, Zhao Li-ying, Cao Ning-bo. Hazardous material transportation scheduling model based on multilayer coding genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 751-755.
20 王伊丽, 徐良英, 李碧青, 等. 挤扩支盘桩竖向承载力特性和影响因素的数值研究[J]. 土木工程学报, 2015, 48(): 158-162.
Wang Yi-li, Xu Liang-ying, Li Bi-qing, et al. Finite element numerical study on the axial bearing behaviors and factors of squeezed branch pile[J]. China Civil Engineering Journal,2015,48(Sup.2): 158-162.
[1] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[2] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[3] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[4] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[5] 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855.
[6] 姜斌祥,姜彤彤,王永雷. 基于文化遗传算法的毒品检验区块链共识算法优化[J]. 吉林大学学报(工学版), 2022, 52(3): 684-692.
[7] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[8] 李晗,杜鹏,杜颖,李晓会. 基于遗传算法的无线体域网多路径路由选择方法[J]. 吉林大学学报(工学版), 2022, 52(11): 2706-2711.
[9] 李翠玉,胡雅梦,康亚伟,张德良. 应用自适应遗传算法的电动汽车充放电协同调度[J]. 吉林大学学报(工学版), 2022, 52(11): 2508-2513.
[10] 朱思峰,赵明阳,柴争义. 边缘计算场景中基于粒子群优化算法的计算卸载[J]. 吉林大学学报(工学版), 2022, 52(11): 2698-2705.
[11] 陈传海,姚国祥,金桐彤,申桂香,于立娟,田海龙. 基于响应面与遗传算法的主轴系统动力学建模及参数修正[J]. 吉林大学学报(工学版), 2022, 52(10): 2278-2286.
[12] 冯建鑫,王强,王雅雷,胥彪. 基于改进量子遗传算法的超声电机模糊PID控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1990-1996.
[13] 户佐安,夏一鸣,蔡佳,薛锋. 延误条件下综合多种策略的城轨列车运行调整优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1664-1672.
[14] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[15] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!