吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2508-2513.doi: 10.13229/j.cnki.jdxbgxb20211200

• 车辆工程·机械工程 • 上一篇    

应用自适应遗传算法的电动汽车充放电协同调度

李翠玉1(),胡雅梦1,康亚伟2,张德良1   

  1. 1.湖北工业大学 工业设计学院,武汉 430068
    2.湖北工业大学 机械学院,武汉 430068
  • 收稿日期:2021-11-15 出版日期:2022-11-01 发布日期:2022-11-16
  • 作者简介:李翠玉(1980-),女,副教授,博士.研究方向:智能家居,产品设计,智能车辆.E-mail:licuiyu5454@yeah.net
  • 基金资助:
    国家自然科学基金项目(41601355)

Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm

Cui-yu LI1(),Ya-meng HU1,Ya-wei KANG2,De-liang ZHANG1   

  1. 1.School of Industrial Design Engineering,Hubei University of Technology,Wuhan 430068,China
    2.School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China
  • Received:2021-11-15 Online:2022-11-01 Published:2022-11-16

摘要:

针对当前方法对电动汽车充放电协同调度存在调度时间长、调度的精准度低以及功率能耗大的问题,提出了应用自适应遗传算法的电动汽车充放电协同调度方法。首先,通过对电动汽车的充电预测,合理规划电动汽车的充电设施,并以此为基础,提出了相关约束条件,建立了电动汽车的充放电协同调度模型;然后,通过自适应遗传粒子群算法对模型进行了求解;最后,通过计算结果,完成了电动汽车的充放电协同调度。实验结果表明:本文方法在进行电动汽车充放电协同调度时,调度时长短、精准度高且所需的功率能耗小。

关键词: 自适应遗传算法, 粒子群算法, 电动汽车, 充放电, 协同调度, 调度模型, 充电方式

Abstract:

Aiming at the problems of long scheduling time, low scheduling accuracy, and large power consumption in the current method for electric vehicle charging and discharging coordinated scheduling, a method for electric vehicle charging and discharging coordinated deployment using adaptive genetic algorithm is proposed. Firstly, through the charging prediction of electric vehicles, the charging facilities of electric vehicles are reasonably planned, and on this basis, the relevant constraints are put forward to establish the charging and discharging cooperative scheduling model of electric vehicles. Then, the model was solved by adaptive genetic particle swarm optimization algorithm.Finally, through the calculation results, the coordinated charging and discharging scheduling of electric vehicles is completed. The experimental results show that the method proposed in this paper has short scheduling time, high accuracy and low power consumption when performing electric vehicle charging and discharging coordinated scheduling.

Key words: adaptive genetic algorithm, particle swarm algorithm, electric vehicle, charging and discharging, collaborative scheduling, scheduling model, charging method

中图分类号: 

  • TM721

图1

充电设施规划流程"

图2

粒子群模型求解流程图"

图3

不同环境下3种方法协同调度时间测试结果"

图4

不同协同调度方法的电路负载率测试结果"

图5

不同协同调度方法所用能耗测试结果"

1 张丽, 朱孝勇, 左月飞. 电动汽车用转子永磁型无刷电机与控制系统容错技术综述[J]. 中国电机工程学报, 2019, 39(6): 1792-1802, 1875.
Zhang Li, Zhu Xiao-yong, Zuo Yue-fei. Overview of fault-tolerant technologies of rotor permanent magnet brushless machine and its control system for electric vehicles[J]. Proceedings of the CSEE, 2019, 39(6): 1792-1802, 1875.
2 齐鹏远, 刘伟杰, 马伟民. 光伏系统中储能电源充放电特性应用分析[J]. 功能材料, 2019, 50(1): 1110-1113.
' Qi Peng-yuan, Liu Wei-jie, Ma Wei-min. Application analysis of charging and discharging for battery in photovoltaic system[J]. Journal of Functional Materials, 2019, 50(1): 1110-1113.
3 张怡冰, 刘其辉, 洪晨威, 等. 基于模糊控制的区域电动汽车入网充放电调度策略[J]. 电力自动化设备, 2019, 39(7): 147-153.
Zhang Yi-bing, Liu Qi-hui, Hong Chen-wei, et al.Charging and discharging dispatch strategy of regional V2G based on fuzzy control[J]. Electric Power Automation Equipment, 2019, 39(7): 147-153.
4 于娜, 于飞, 黄大为, 等. 基于多代理系统的电动汽车充放电分布式协同调度策略[J]. 电力系统保护与控制, 2019, 47(5): 1-9.
Yu Na, Yu Fei, Huang Da-wei, et al. Multi-agent system based charging and discharging of electric vehicles distributed coordination dispatch strategy[J]. Power System Protection and Control, 2019, 47(5): 1-9.
5 冯建鑫, 王强, 王雅雷, 等. 基于改进量子遗传算法的超声电机模糊PID控制[J]. 吉林大学学报: 工学版, 2021, 51(6): 1990-1996.
Feng Jian-xin, Wang Qiang, Wang Ya-lei, et al. Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1990-1996.
6 王聪, 马彦, 王国光. 电动汽车充电站内的实时最优功率分配[J]. 吉林大学学报: 工学版, 2021, 51(4): 1490-1495.
Wang Cong, Ma Yan, Wang Guo-guang, et al.Real-time optimal power allocation inside electric-vehicle charging stations[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1490-1495.
7 袁臣虎,李海杰,王岁,等.锂电池四阶段智能充电方法的研究[J].电源技术, 2019, 43(3): 402-404, 414.
Yuan Chen-hu, Li Hai-jie, Wang Sui, et al. Research of four-stage intelligent charging way for lithium battery[J]. Chinese Journal of Power Sources, 2019, 43(3): 402-404, 414.
8 张厚升, 李震梅, 边敦新, 等. 电动汽车用三相开绕组永磁同步电机的控制及容错运行[J]. 吉林大学学报: 工学版, 2020, 50(3): 784-795.
Zhang Hou-sheng, Li Zhen-mei, Bian Dun-xin, et al. Control and fault-tolerant operation of TPOW-PMSM for electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 784-795.
9 陈恒安, 管霖, 卢操, 等. 新能源发电为主电源的独立微网多目标优化调度模型和算法[J]. 电网技术, 2020, 44(2): 664-674.
Chen Heng-an, Guan Lin, Lu Cao, et al. Multi-objective optimal dispatch model and its algorithm in isolated microgrid with renewable energy generation as main power supply[J]. Power System Technology, 2020, 44(2): 664-674.
10 朱子轩, 鲁工圆, 何必胜, 等. 单线铁路网络列车运行智能调度仿真研究[J]. 计算机仿真, 2019, 36(5): 194-201.
Zhu Zi-xuan, Lu Gong-yuan, He Bi-sheng, et al.Simulation research on intelligent dispatching of train operation on single-track railway network[J]. Computer Simulation, 2019, 36(5): 194-201.
11 徐红涛, 陈春波, 郑宏伟, 等. 基于相关分析和自适应遗传算法的盐渍化建模变量和参数优选[J]. 地球信息科学学报, 2020, 22(7): 1497-1509.
Xu Hong-tao, Chen Chun-bo, Zheng Hong-wei, et al. Correlation analysis and adaptive genetic algorithm based feature subset and modelparameter optimization in salinization monitoring[J]. Journal of Geo-information Science, 2020, 22(7): 1497-1509.
[1] 管仁初,贺宝润,梁艳春,时小虎. 基于亲缘关系选择的粒子群优化算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1842-1849.
[2] 陈昭明,邹劲松,王伟,石明全. 改进粒子群神经网络融合有限元分析的铸锻双控动态成型多目标优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1524-1533.
[3] 邢海燕,刘超,徐成,陈玉环,王松弘泽. 基于粒子群优化模糊C焊缝等级磁记忆定量识别模型[J]. 吉林大学学报(工学版), 2022, 52(3): 525-532.
[4] 罗巍,卢博,陈菲,马腾. 基于PSO-SVM及时序环节的数控刀架故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(2): 392-399.
[5] 张必达,闫强,张琳,张海瑞. 基于实时交通信息的电动汽车充换电路径规划方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2333-2342.
[6] 赵又群,李宇昊,邓汇凡,林涛,林棻. 基于Popov超稳定性的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2022, 52(10): 2225-2233.
[7] 李明,薛庆峰,张可欣,吕然,韦长华. 电动汽车热泵空调系统性能分析[J]. 吉林大学学报(工学版), 2021, 51(6): 1943-1952.
[8] 李浩,陈浩. 考虑充电排队时间的电动汽车混合交通路网均衡[J]. 吉林大学学报(工学版), 2021, 51(5): 1684-1691.
[9] 王聪,马彦,王国光. 电动汽车充电站内的实时最优功率分配[J]. 吉林大学学报(工学版), 2021, 51(4): 1490-1495.
[10] 宋强,孙丹婷,章伟. 纯电动车机械式自动变速器换挡非线性建模及控制[J]. 吉林大学学报(工学版), 2021, 51(3): 810-819.
[11] 马芳武,韩丽,吴量,李金杭,杨龙帆. 基于遗传与粒子群算法的隔振平台减振性能优化[J]. 吉林大学学报(工学版), 2020, 50(5): 1608-1616.
[12] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[13] 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652.
[14] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[15] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!