吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 938-946.doi: 10.13229/j.cnki.jdxbgxb.20220628

• 材料科学与工程 • 上一篇    下一篇

(Mg2Si+Si)/Al复合材料的组织和耐磨性

刘晓波1(),杨淼2(),周德坤1   

  1. 1.北华大学 机械工程学院,吉林省 吉林市 132021
    2.北华大学 工程训练中心,吉林省 吉林市 132021
  • 收稿日期:2022-05-22 出版日期:2024-04-01 发布日期:2024-05-17
  • 通讯作者: 杨淼 E-mail:stone-666@126.com;yangmiao1021@163.com
  • 作者简介:刘晓波(1979-),女,副教授,博士. 研究方向:铝基复合材料的组织和性能. E-mail: stone-666@126.com
  • 基金资助:
    国家自然科学基金地区科学基金项目(51964011);吉林省科技发展计划项目(YDZJ202101ZYTS172);吉林省教育厅科学技术研究项目(JJKH20210036KJ)

Microstructure and wear resistance of (Mg2Si+Si)/Al composites

Xiao-bo LIU1(),Miao YANG2(),De-kun ZHOU1   

  1. 1.College of Mechanical Engineering,Beihua University,Jilin 132021,China
    2.Engineering Training Center,Beihua University,Jilin 132021,China
  • Received:2022-05-22 Online:2024-04-01 Published:2024-05-17
  • Contact: Miao YANG E-mail:stone-666@126.com;yangmiao1021@163.com

摘要:

采用熔铸法制备了不同凝固速率的原位(Mg2Si+Si)/Al复合材料,研究了其组织和耐磨性。结果表明,磷改性后,初生Mg2Si为多边形块状,初生Si仍为复杂形貌。随着凝固速率的提高,初生Mg2Si和初生Si的数量随之增加,尺寸随之减小。萃取试验表明,Mg2Si晶体具有十四面体和六面体形貌。研究了不同滑动速度和载荷条件下复合材料对45#钢的干滑动磨损行为。结果表明,复合材料的耐磨性随着凝固速率的提高而提高,(Mg2Si+Si)/Al复合材料的失效机制主要是黏着磨损和磨粒磨损。

关键词: 原位(Mg2Si+Si)/Al复合材料, 显微组织, 干滑动磨损, 耐磨性

Abstract:

In-situ (Mg2Si+Si)/Al composites were prepared by using melting casting with different solidification rates. The microstructure and wear resistance of (Mg2Si+Si)/Al composites were investigated. The results show that, after P modification, the primary Mg2Si transformed to polygonal blocks, while the primary Si was mainly complex morphology. With increasing the solidification rate, the number of primary Mg2Si and primary Si particles increased and their particle sizes decreased. Extraction tests showed that the Mg2Si crystals had tetrahedral and hexahedral morphologies. Dry sliding wear behaviors of (Mg2Si+Si)/Al composites with different solidification rates against 45# steel, under conditions of different sliding speeds and loads, were investigated. The results show that, the wear resistance of (Mg2Si+Si)/Al composites increased with the increasing of the solidification rate. The wear mechanisms of (Mg2Si+Si)/Al composites are mainly adhesive wear and abrasive wear.

Key words: in-situ (Mg2Si+Si)/Al composites, microstructure, dry sliding wear, wear resistance

中图分类号: 

  • TB331

图1

凝固速率为V1时,(Mg2Si+Si)/Al复合材料的XRD图谱"

图2

(Mg2Si+Si)/Al复合材料的显微组织"

图3

利用萃取的方法从(Mg2Si+Si)/Al复合材料中获得的Mg2Si颗粒"

图4

六面体Mg2Si颗粒生长过程示意图"

图5

滑动速率为700 r/min时,(Mg2Si+Si)/Al复合材料的磨损体积和载荷的关系曲线"

图6

50 N载荷下,(Mg2Si+Si)/Al复合材料的磨损表面的SEM和EDS分析"

图7

(Mg2Si+Si)/Al复合材料的磨屑"

图8

(Mg2Si+Si)/Al复合材料磨损体积和滑动速率的关系曲线"

图9

滑动速率为1000 r/min时(Mg2Si+Si)/Al复合材料的磨损表面和EDS分析"

1 Seth P P, Parkash O, Kumar D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys-a review[J]. Royal Society of Chemistry, 2020, 10: 37327-37345.
2 Qin Q D, Li W X, Zhao K W, et al. Effect of modification and aging treatment on mechanical properties of Mg2Si/Al composite[J]. Materials Science and Engineering A, 2010, 527(9): 2253-2257.
3 Qin Q D, Zhao Y G, Zhou W. Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material[J]. Wear, 2008, 264(7,8): 654-661.
4 周琦, 李延荣, 胡永辉, 等. 球磨时间对Mg2Si组织和 性能的影响[J]. 兰州理工大学学报, 2014, 40(4): 9-12.
Zhou Qi, Li Yan-Rong, Hu Yong-Hui, et al.Influence of ball milling time on microstructures and properties of Mg2Si[J]. Journal of Lanzhou University of Technology, 2014, 40(4): 9-12.
5 Song C J, Xu Z M, Liang G F, et al.Study of in situ Al/Mg2Si functional graded materials by electronmagnetic separation method[J]. Materials Science and Engineering A, 2006, 424(1-2): 6-16.
6 周琦, 李福祥, 南雪丽, 等. 自蔓延高温合成Al/Mg2Si 复合材料的淬熄试验[J]. 兰州理工大学学报, 2009,35(3): 1-3.
Zhou Qi, Li Fu-Xiang, Xue-Li Nan, et al. Quenching experiment of Al/Mg2Si composite synthesized with high-temperature self-propagation[J]. Journal of Lanzhou University of Technology, 2009, 35(3): 1-3.
7 Qin Q D, Zhao Y G. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification[J]. Journal of Alloys and Compounds, 2008, 462(1-2): 28-31.
8 Zhai Y B, Ma X T, Mei Z. Centrifugal forming mechanism of Al gradient composites reinforced with complementary primary Si and Mg2Si particles[J]. Rare Metal Materials and Engineering, 2014, 43(4): 769-774.
9 刘政, 谢敏, 封志芳,等. 熔体过热处理对过共晶 Al-Si-Mg合金中Mg2Si相的影响[J]. 金属热处理, 2010, 35(10): 63-66.
Liu Zheng, Xie Min, Feng Zhi-Fang, et al.Influence of melt superheating on Mg2Si phase of hypereutectic Al-Si-Mg casting alloy[J]. Heat Treatment of Metals, 2010, 35(10): 63-66.
10 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报:工学版, 2016, 46(5): 1577-1582.
Liu Xiao-Bo, Zhou De-Kun, Zhao Yu-Guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1577-1582.
11 任玉艳. 原位Mg2Si/Al复合材料强韧化及其机理的研究[D].沈阳: 沈阳工业大学材料科学与工程学院, 2012: 12-13.
Ren Yu-Yan. Study on strengthening and toughening mechanisms of in-situ Mg2Si/Al composite[D]. Shengyang: College of Material Science and Engineering,Shengyang University of Technology, 2012: 12-13.
12 Zhao Y G, Qin Q D, Zhao Y Q, et al.In situ Mg2Si/Al-Si composite modified by K2TiF6 [J]. Materials Letters, 2004, 58(16): 2192-2194.
13 Qin Q D, Zhao Y G, Zhou W, et al.Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite[J]. Materials Science and Engineering A, 2007, 447(1,2): 186-191.
14 Wu X F, Zhang G A, Wu F F. Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1532-1542.
15 Wu X F, Zhang G A, Wu F F. Microstructure and dry sliding wear behavior of cast Al-Mg2Si in-situ metal matrix composite modified by Nd[J]. Rare metals, 2013, 32(3): 284-289.
16 Tang S Q, Zhou J X, Tian C W, et al. Morphology modification of Mg2Si by Sr addition in Mg-4%Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1932-1936.
17 Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg2Si in Mg-Si alloys with yttrium[J]. Materials Science and Engineering A, 2005, 392(1,2): 130-135.
18 林继兴. 复合变质对原位Mg2Si/Al-Si复合材料组织优 化研究[J]. 轻合金加工技术, 2008, 36(11): 11-14.
Lin Ji-Xing. Study on optimization of complex modification on microstructure in in-situ Mg2Si/Al-Si composite[J]. Light Alloy Fabrication Technology, 2008, 36(11): 11-14.
19 Zhang J, Fan Z, Wang Y Q, et al. Microstructural refinement in Al-Mg2Si in situ composites[J]. Journal of Materials Science Letters, 1999, 18(2): 783-784.
20 Liu X B, Yang M, Zhou D K, et al. Microstructure and wear resistance of Mg2Si-Al composites fabricated using semi-solid extrusion[J]. Metals, 2020,10(5): No.596.
21 Kobayashi K F, Hogan L M. The crystal growth of silicon in Al-Si alloys[J]. Jourmal of Materials Science, 1985, 20(6): 1961-1975.
22 周德坤, 刘晓波. 凝固速率对Mg2Si/Al复合材料组织和力学性能的影响[J]. 金属热处理, 2017, 42(10): 43-46.
Zhou De-Kun, Liu Xiao-Bo. Effect of solidification rate on microstructure and mechanical properties of Mg2Si/Al composites[J]. Heat Treatment of Metals, 2017, 42(10): 43-46.
23 Sekhar J A, Trivedi R. Solidification microstructure evolution in the presence of inert particles[J]. Materials Science and Engineering A, 1991, 147: 9-12.
24 陈磊. 变质Al-20wt.%Mg2Si合金中初生Mg2Si生长形貌演化与调控机制[D]. 长春:吉林大学材料科学与工程学院,2015: 48-53.
Chen Lei. The growth morphology evolution and regulation mechanism of primary Mg2Si in modified Al-20wt.%Mg2Si alloys[D]. Changchun: College of Material Science and Engineering, Jilin University, 2015: 48-53.
25 Wang R Y, Lu W H, Hogan L M. Faceted growth of silicon crystals in Al-Si alloys[J]. Metallurgical and materials transactions A, 1997, 28(5):1233-1250.
26 Hu Y, Rao L. Effect of particulate reinforcement on wear behavior of magnesium matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(Sup.1): 2659-2664.
27 Somi Reddy A, Pramila Bai B N, Murthy K S S, et al. Wear and seizure of binary Al-Si alloys[J]. Wear, 1994, 171(1,2): 115-127.
28 Kwok J K M, Lim S C. High-speed tribological properties of some Al/SiCp composites: II. Wear Mechanisms[J]. Composites Science and Technology, 1999, 59: 65-75.
29 Sannino A P, Rack H J. Dry sliding wear of discontinuously reinforced aluminium composites: Review and discussion[J]. Wear, 1995, 189: 1-19.
30 Casellas D, Beltran A, Prado J M, et al. Microstructural effects on the dry wear resistance of powder metallurgy Al-Si alloys[J]. Materials Science and Engineering A, 2004, 257: 730-739.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[3] 郑孝义, 孙大千, 李欣, 都桂刚, 辛伟达, 任振安. NbAl3强化Al-Nb熔覆层的组织与性能[J]. 吉林大学学报(工学版), 2018, 48(5): 1531-1536.
[4] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[5] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[6] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[7] 张金波,佟金,马云海. 仿生肋条结构表面深松铲刃的磨料磨损特性[J]. 吉林大学学报(工学版), 2015, 45(1): 174-180.
[8] 白志范, 李桂中, 王超, 王良, 张志敏. 高速客车转向架构架焊接接头组织与力学性能[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 207-211.
[9] 王素芬, 彭艳, 李志杰, 肖力子. 薄板坯连铸连轧工艺生产的低碳钢冷轧基板力学特性[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 221-224.
[10] 白志范, 李桂中, 王超. S355J2W+N钢焊接接头显微组织与力学性能[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 202-204.
[11] 刘晓波1,2,赵宇光1,杨雯1,张家陶1. (Mg2Si+SiCp)/Mg复合材料的耐磨性[J]. 吉林大学学报(工学版), 2011, 41(6): 1618-1624.
[12] 李光玉,苏颖超,付宇,连建设,赵宇光. 离心铸造条件对Mg2Si/Al梯度复合材料组织与性能的影响[J]. 吉林大学学报(工学版), 2011, 41(05): 1295-1299.
[13] 刘晓波, 赵宇光, 刘雁. Mg2Si/Al梯度复合材料的耐磨性[J]. 吉林大学学报(工学版), 2011, 41(02): 371-0376.
[14] 卢广林,邱小明, 白杨,伦辛杰,邓宝清,任露泉. c-BN仿生耐磨复合材料的微观结构和耐磨性能[J]. 吉林大学学报(工学版), 2011, 41(01): 73-0077.
[15] 高一鹏,丁洪,金学军. CoAlW合金时效过程中γ′相析出的相场模拟[J]. 吉林大学学报(工学版), 2011, 41(01): 84-0088.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!